Citation: | Olivera JOVANOVIĆ, Nevena PUAČ, Nikola ŠKORO. A comparison of power measurement techniques and electrical characterization of an atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2022, 24(10): 105404. DOI: 10.1088/2058-6272/ac742b |
In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets (APPJs) that operate in contact with liquid samples. In order to form a complete picture about such experimental systems, it is necessary to perform detailed diagnostics of plasma jets, as one step that will enable the adjustment of system properties for applications in different areas. In this work, we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment. A helium plasma jet, with a pin electrode powered by a continuous sine wave at a frequency of 330 kHz, formed a streamer that was in contact with a distilled water sample. An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself. An electrical characterisation together with power consumption measurements was obtained by using two different methods. The first method was based on the direct measurements of voltage and current signals, while in the second method we used 'Lissajous figures'. We compared these two methods when used for discharge power estimation and addressed their advantages and limitations. The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water, but only when taking into account power dissipation without plasma.
This research has been supported by MESTD Republic of Serbia (No. 451-03-68/2020-14/200024).
[1] |
Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901 doi: 10.1063/1.4993710
|
[2] |
Khlyustova A et al 2019 Front. Chem. Sci. Eng. 13 238 doi: 10.1007/s11705-019-1801-8
|
[3] |
Bauer G et al 2019 Sci Rep. 9 14210 doi: 10.1038/s41598-019-50291-0
|
[4] |
Tomić S et al 2021 Cancers 13 1626 doi: 10.3390/cancers13071626
|
[5] |
Puač N, Gherardi M and Shiratani M 2018 Plasma Process. Polym. 15 1700174 doi: 10.1002/ppap.201700174
|
[6] |
Graves D B et al 2019 Plasma Chem. Plasma Process. 39 1 doi: 10.1007/s11090-018-9944-9
|
[7] |
Magureanu M et al 2021 J. Hazard. Mater. 417 125481 doi: 10.1016/j.jhazmat.2021.125481
|
[8] |
Foster J E 2017 Phys. Plasmas 24 055501 doi: 10.1063/1.4977921
|
[9] |
Škoro N et al 2018 Eur. Phys. J. D 72 2 doi: 10.1140/epjd/e2017-80329-9
|
[10] |
Janić Hajnal E et al 2019 Toxins 11 704 doi: 10.3390/toxins11120704
|
[11] |
Bruggeman P J, Iza F and Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002 doi: 10.1088/1361-6595/aa97af
|
[12] |
Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001 doi: 10.1088/1361-6595/aa6426
|
[13] |
Reuter S, Von Woedtke T and Weltmann K D 2018 J. Phys. D: Appl. Phys. 51 233001 doi: 10.1088/1361-6463/aab3ad
|
[14] |
Sobota A, Guaitella O and Rousseau A 2014 Plasma Sources Sci. Technol. 23 025016 doi: 10.1088/0963-0252/23/2/025016
|
[15] |
Puač N et al 2012 Appl. Phys. Lett. 101 024103 doi: 10.1063/1.4735156
|
[16] |
Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001 doi: 10.1088/0963-0252/24/6/064001
|
[17] |
Robert E et al 2012 Plasma Sources Sci. Technol. 21 034017 doi: 10.1088/0963-0252/21/3/034017
|
[18] |
Nijdam S, Teunissen J and Ebert U 2020 Plasma Sources Sci. Technol. 29 103001 doi: 10.1088/1361-6595/abaa05
|
[19] |
Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 075201 doi: 10.1088/0022-3727/43/7/075201
|
[20] |
Lu P et al 2017 Appl. Phys. Lett. 110 264102 doi: 10.1063/1.4990525
|
[21] |
Xiong Q et al 2010 Phys. Plasmas 17 043506 doi: 10.1063/1.3381132
|
[22] |
Simoncelli E et al 2019 Plasma 2 369 doi: 10.3390/plasma2030029
|
[23] |
Sobota A et al 2019 Plasma Sources Sci. Technol. 28 045003 doi: 10.1088/1361-6595/ab0c6a
|
[24] |
Judée F et al 2019 J. Phys. D: Appl. Phys. 52 245201 doi: 10.1088/1361-6463/ab0fbb
|
[25] |
Kutasi K et al 2019 Plasma Sources Sci. Technol. 28 095010 doi: 10.1088/1361-6595/ab3c2f
|
[26] |
Kovačević V V et al 2018 J. Phys. D: Appl. Phys. 51 065202 doi: 10.1088/1361-6463/aaa288
|
[27] |
Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001 doi: 10.1088/0022-3727/46/46/464001
|
[28] |
Machala Z et al 2019 J. Phys. D: Appl. Phys. 52 034002 doi: 10.1088/1361-6463/aae807
|
[29] |
Ng S W et al 2021 J. Appl. Phys. 129 123303 doi: 10.1063/5.0039171
|
[30] |
Kostov K G et al 2014 Appl. Surf. Sci. 314 367 doi: 10.1016/j.apsusc.2014.07.009
|
[31] |
Ghimire B et al 2018 Appl. Phys. Lett. 113 194101 doi: 10.1063/1.5055592
|
[32] |
Deng X L et al 2013 J. Appl. Phys. 113 023305 doi: 10.1063/1.4774328
|
[33] |
Gerling T et al 2017 Eur. Phys. J. Appl. Phys. 78 10801 doi: 10.1051/epjap/2017160489
|
[34] |
Takeda K et al 2019 J. Phys. D: Appl. Phys. 52 165202 doi: 10.1088/1361-6463/aaff44
|
[35] |
Prysiazhnyi V, Ricci A H C and Kostov K G 2016 Braz. J. Phys. 46 496 doi: 10.1007/s13538-016-0433-4
|
[36] |
Maletić D et al 2017 J. Phys. D: Appl. Phys. 50 145202 doi: 10.1088/1361-6463/aa5d91
|
[37] |
Hensel K et al 2015 Biointerphases 10 029515 doi: 10.1116/1.4919559
|
[38] |
Van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203 doi: 10.1088/0022-3727/46/17/175203
|
[39] |
Stancampiano A et al 2020 IEEE Trans. Radiat. Plasma Med. Sci. 4 335 doi: 10.1109/TRPMS.2019.2936667
|
[40] |
Laurita R et al 2021 Plasma Process. Polym. 18 2000206 doi: 10.1002/ppap.202000206
|
[41] |
Ashpis D E, Laun M C and Griebeler E L 2017 AIAA J. 55 2254 doi: 10.2514/1.J055816
|
[42] |
Biganzoli I et al 2014 J. Phys. Conf. Ser. 550 012039 doi: 10.1088/1742-6596/550/1/012039
|
[43] |
Hołub M 2012 Int. J. Appl. Electromagn. Mech. 39 81 doi: 10.3233/JAE-2012-1446
|
[44] |
Pipa A V et al 2012 Rev. Sci. Instrum. 83 075111 doi: 10.1063/1.4737623
|
[45] |
Lu X P et al 2019 Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications (Boca Raton: CRC Press)
|
[46] |
Weltmann K D et al 2010 Pure Appl. Chem. 82 1223 doi: 10.1351/PAC-CON-09-10-35
|
[47] |
Nguyen T T et al 2019 Plasma Res. Express 1 015009 doi: 10.1088/2516-1067/aaf958
|
[48] |
Peeters F and Butterworth T 2019 Electrical diagnostics of dielectric barrier discharges Atmospheric Pressure Plasmafrom Diagnostics to Applications (London: Intech Open) p 8
|
[49] |
Maletić D et al 2015 Plasma Sources Sci. Technol. 24 025006 doi: 10.1088/0963-0252/24/2/025006
|
[50] |
Chang Z S et al 2018 Sci Rep. 8 7599 doi: 10.1038/s41598-018-25962-z
|
[51] |
Li J et al 2021 Commun. Phys. 4 64 doi: 10.1038/s42005-021-00566-8
|
[52] |
Darny T et al 2017 Plasma Sources Sci. Technol. 26 045008 doi: 10.1088/1361-6595/aa5b15
|
[53] |
Klarenaar B L M et al 2018 Plasma Sources Sci. Technol. 27 085004 doi: 10.1088/1361-6595/aad4d7
|
[54] |
Law V J and Anghel S D 2012 J. Phys. D: Appl. Phys. 45 075202 doi: 10.1088/0022-3727/45/7/075202
|
[55] |
Wang R X et al 2021 IEEE Trans. Plasma Sci. 49 2210 doi: 10.1109/TPS.2021.3084601
|
[56] |
Jiang H et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1101 doi: 10.1109/TDEI.2013.6571423
|
[1] | Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99 |
[2] | Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2 |
[3] | HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09 |
[4] | LIU Zhijie (刘志杰), WANG Wenchun (王文春), YANG Dezheng (杨德正), WANG Sen (王森), DAI Leyang (戴乐阳). Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor[J]. Plasma Science and Technology, 2016, 18(7): 759-763. DOI: 10.1088/1009-0630/18/7/10 |
[5] | GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09 |
[6] | JIN Yong(金涌), LI Baoming(栗保明). Calculation of Plasma Radiation in Electrothermal-Chemical Launcher[J]. Plasma Science and Technology, 2014, 16(1): 50-53. DOI: 10.1088/1009-0630/16/1/11 |
[7] | ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14 |
[8] | N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07 |
[9] | YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11 |
[10] | YANG Qi, HU Hui, CHEN Weipeng, XU jie, ZHANG Jinli, WU Shuang. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge[J]. Plasma Science and Technology, 2011, 13(6): 702-707. |
1. | Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a |
2. | Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664 |