Advanced Search+
Olivera JOVANOVIĆ, Nevena PUAČ, Nikola ŠKORO. A comparison of power measurement techniques and electrical characterization of an atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2022, 24(10): 105404. DOI: 10.1088/2058-6272/ac742b
Citation: Olivera JOVANOVIĆ, Nevena PUAČ, Nikola ŠKORO. A comparison of power measurement techniques and electrical characterization of an atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2022, 24(10): 105404. DOI: 10.1088/2058-6272/ac742b

A comparison of power measurement techniques and electrical characterization of an atmospheric pressure plasma jet

More Information
  • Corresponding author:

    Olivera JOVANOVIĆ, E-mail: olivera@ipb.ac.rs

  • Received Date: February 07, 2022
  • Revised Date: April 26, 2022
  • Accepted Date: May 26, 2022
  • Available Online: December 07, 2023
  • Published Date: July 26, 2022
  • In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets (APPJs) that operate in contact with liquid samples. In order to form a complete picture about such experimental systems, it is necessary to perform detailed diagnostics of plasma jets, as one step that will enable the adjustment of system properties for applications in different areas. In this work, we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment. A helium plasma jet, with a pin electrode powered by a continuous sine wave at a frequency of 330 kHz, formed a streamer that was in contact with a distilled water sample. An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself. An electrical characterisation together with power consumption measurements was obtained by using two different methods. The first method was based on the direct measurements of voltage and current signals, while in the second method we used 'Lissajous figures'. We compared these two methods when used for discharge power estimation and addressed their advantages and limitations. The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water, but only when taking into account power dissipation without plasma.

  • This research has been supported by MESTD Republic of Serbia (No. 451-03-68/2020-14/200024).

  • [1]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901 doi: 10.1063/1.4993710
    [2]
    Khlyustova A et al 2019 Front. Chem. Sci. Eng. 13 238 doi: 10.1007/s11705-019-1801-8
    [3]
    Bauer G et al 2019 Sci Rep. 9 14210 doi: 10.1038/s41598-019-50291-0
    [4]
    Tomić S et al 2021 Cancers 13 1626 doi: 10.3390/cancers13071626
    [5]
    Puač N, Gherardi M and Shiratani M 2018 Plasma Process. Polym. 15 1700174 doi: 10.1002/ppap.201700174
    [6]
    Graves D B et al 2019 Plasma Chem. Plasma Process. 39 1 doi: 10.1007/s11090-018-9944-9
    [7]
    Magureanu M et al 2021 J. Hazard. Mater. 417 125481 doi: 10.1016/j.jhazmat.2021.125481
    [8]
    Foster J E 2017 Phys. Plasmas 24 055501 doi: 10.1063/1.4977921
    [9]
    Škoro N et al 2018 Eur. Phys. J. D 72 2 doi: 10.1140/epjd/e2017-80329-9
    [10]
    Janić Hajnal E et al 2019 Toxins 11 704 doi: 10.3390/toxins11120704
    [11]
    Bruggeman P J, Iza F and Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002 doi: 10.1088/1361-6595/aa97af
    [12]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001 doi: 10.1088/1361-6595/aa6426
    [13]
    Reuter S, Von Woedtke T and Weltmann K D 2018 J. Phys. D: Appl. Phys. 51 233001 doi: 10.1088/1361-6463/aab3ad
    [14]
    Sobota A, Guaitella O and Rousseau A 2014 Plasma Sources Sci. Technol. 23 025016 doi: 10.1088/0963-0252/23/2/025016
    [15]
    Puač N et al 2012 Appl. Phys. Lett. 101 024103 doi: 10.1063/1.4735156
    [16]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001 doi: 10.1088/0963-0252/24/6/064001
    [17]
    Robert E et al 2012 Plasma Sources Sci. Technol. 21 034017 doi: 10.1088/0963-0252/21/3/034017
    [18]
    Nijdam S, Teunissen J and Ebert U 2020 Plasma Sources Sci. Technol. 29 103001 doi: 10.1088/1361-6595/abaa05
    [19]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 075201 doi: 10.1088/0022-3727/43/7/075201
    [20]
    Lu P et al 2017 Appl. Phys. Lett. 110 264102 doi: 10.1063/1.4990525
    [21]
    Xiong Q et al 2010 Phys. Plasmas 17 043506 doi: 10.1063/1.3381132
    [22]
    Simoncelli E et al 2019 Plasma 2 369 doi: 10.3390/plasma2030029
    [23]
    Sobota A et al 2019 Plasma Sources Sci. Technol. 28 045003 doi: 10.1088/1361-6595/ab0c6a
    [24]
    Judée F et al 2019 J. Phys. D: Appl. Phys. 52 245201 doi: 10.1088/1361-6463/ab0fbb
    [25]
    Kutasi K et al 2019 Plasma Sources Sci. Technol. 28 095010 doi: 10.1088/1361-6595/ab3c2f
    [26]
    Kovačević V V et al 2018 J. Phys. D: Appl. Phys. 51 065202 doi: 10.1088/1361-6463/aaa288
    [27]
    Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001 doi: 10.1088/0022-3727/46/46/464001
    [28]
    Machala Z et al 2019 J. Phys. D: Appl. Phys. 52 034002 doi: 10.1088/1361-6463/aae807
    [29]
    Ng S W et al 2021 J. Appl. Phys. 129 123303 doi: 10.1063/5.0039171
    [30]
    Kostov K G et al 2014 Appl. Surf. Sci. 314 367 doi: 10.1016/j.apsusc.2014.07.009
    [31]
    Ghimire B et al 2018 Appl. Phys. Lett. 113 194101 doi: 10.1063/1.5055592
    [32]
    Deng X L et al 2013 J. Appl. Phys. 113 023305 doi: 10.1063/1.4774328
    [33]
    Gerling T et al 2017 Eur. Phys. J. Appl. Phys. 78 10801 doi: 10.1051/epjap/2017160489
    [34]
    Takeda K et al 2019 J. Phys. D: Appl. Phys. 52 165202 doi: 10.1088/1361-6463/aaff44
    [35]
    Prysiazhnyi V, Ricci A H C and Kostov K G 2016 Braz. J. Phys. 46 496 doi: 10.1007/s13538-016-0433-4
    [36]
    Maletić D et al 2017 J. Phys. D: Appl. Phys. 50 145202 doi: 10.1088/1361-6463/aa5d91
    [37]
    Hensel K et al 2015 Biointerphases 10 029515 doi: 10.1116/1.4919559
    [38]
    Van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203 doi: 10.1088/0022-3727/46/17/175203
    [39]
    Stancampiano A et al 2020 IEEE Trans. Radiat. Plasma Med. Sci. 4 335 doi: 10.1109/TRPMS.2019.2936667
    [40]
    Laurita R et al 2021 Plasma Process. Polym. 18 2000206 doi: 10.1002/ppap.202000206
    [41]
    Ashpis D E, Laun M C and Griebeler E L 2017 AIAA J. 55 2254 doi: 10.2514/1.J055816
    [42]
    Biganzoli I et al 2014 J. Phys. Conf. Ser. 550 012039 doi: 10.1088/1742-6596/550/1/012039
    [43]
    Hołub M 2012 Int. J. Appl. Electromagn. Mech. 39 81 doi: 10.3233/JAE-2012-1446
    [44]
    Pipa A V et al 2012 Rev. Sci. Instrum. 83 075111 doi: 10.1063/1.4737623
    [45]
    Lu X P et al 2019 Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications (Boca Raton: CRC Press)
    [46]
    Weltmann K D et al 2010 Pure Appl. Chem. 82 1223 doi: 10.1351/PAC-CON-09-10-35
    [47]
    Nguyen T T et al 2019 Plasma Res. Express 1 015009 doi: 10.1088/2516-1067/aaf958
    [48]
    Peeters F and Butterworth T 2019 Electrical diagnostics of dielectric barrier discharges Atmospheric Pressure Plasmafrom Diagnostics to Applications (London: Intech Open) p 8
    [49]
    Maletić D et al 2015 Plasma Sources Sci. Technol. 24 025006 doi: 10.1088/0963-0252/24/2/025006
    [50]
    Chang Z S et al 2018 Sci Rep. 8 7599 doi: 10.1038/s41598-018-25962-z
    [51]
    Li J et al 2021 Commun. Phys. 4 64 doi: 10.1038/s42005-021-00566-8
    [52]
    Darny T et al 2017 Plasma Sources Sci. Technol. 26 045008 doi: 10.1088/1361-6595/aa5b15
    [53]
    Klarenaar B L M et al 2018 Plasma Sources Sci. Technol. 27 085004 doi: 10.1088/1361-6595/aad4d7
    [54]
    Law V J and Anghel S D 2012 J. Phys. D: Appl. Phys. 45 075202 doi: 10.1088/0022-3727/45/7/075202
    [55]
    Wang R X et al 2021 IEEE Trans. Plasma Sci. 49 2210 doi: 10.1109/TPS.2021.3084601
    [56]
    Jiang H et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1101 doi: 10.1109/TDEI.2013.6571423
  • Related Articles

    [1]Trung Nguyen TRAN, Bounyang OANTHAVINSAK, Shinichiro KADO, Hiroto MATSUURA. Effect of insulating oil covering electrodes on the characteristics of a dielectric barrier discharge[J]. Plasma Science and Technology, 2020, 22(11): 115401. DOI: 10.1088/2058-6272/aba23c
    [2]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [3]Yinxia GUAN (关银霞), Shiqiang WANG (王世强), Shiya TANG (唐诗雅), Hongxiang MU (牟洪祥), Quanzhen LIU (刘全桢). Effect of power parameters on micro-discharge induced by corona discharge[J]. Plasma Science and Technology, 2019, 21(5): 54007-054007. DOI: 10.1088/2058-6272/ab0336
    [4]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [5]HU Jian (胡健), JIANG Nan (姜楠), LI Jie (李杰), SHANG Kefeng (商克峰), LU Na (鲁娜), WU Yan (吴彦), MIZUNO Akira (水野障). Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power[J]. Plasma Science and Technology, 2016, 18(3): 254-258. DOI: 10.1088/1009-0630/18/3/07
    [6]SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛). A Computational Study on the Discharge Characteristics of Atmospheric Dielectric Barrier Discharges at a Constant Power[J]. Plasma Science and Technology, 2013, 15(10): 1025-1030. DOI: 10.1088/1009-0630/15/10/12
    [7]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08
    [8]ZHANG Fubin(张福斌), WANG Zhenduo(王正铎), CHEN Qiang (陈强), CAI Huiping(蔡惠平). Characterization of W Coating on Cu Substrate Prepared by Double-Glow Discharge[J]. Plasma Science and Technology, 2012, 14(1): 71-74. DOI: 10.1088/1009-0630/14/1/15
    [9]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(5)

    1. Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0
    2. Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476
    3. Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174
    4. ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003
    5. Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003

    Other cited types(0)

Catalog

    Figures(11)  /  Tables(1)

    Article views (160) PDF downloads (515) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return