Advanced Search+
Jiangbo ZHANG, Hongxu GAO, Fei XIAO, Wei LIU, Taixin LIANG, Zhongliang MA. A nanoparticle formation model considering layered motion based on an electrical explosion experiment with Al wires[J]. Plasma Science and Technology, 2023, 25(1): 015508. DOI: 10.1088/2058-6272/ac81a5
Citation: Jiangbo ZHANG, Hongxu GAO, Fei XIAO, Wei LIU, Taixin LIANG, Zhongliang MA. A nanoparticle formation model considering layered motion based on an electrical explosion experiment with Al wires[J]. Plasma Science and Technology, 2023, 25(1): 015508. DOI: 10.1088/2058-6272/ac81a5

A nanoparticle formation model considering layered motion based on an electrical explosion experiment with Al wires

More Information
  • Corresponding author:

    Jiangbo ZHANG, E-mail: zhangjiangbo1981@163.com

    Zhongliang MA, E-mail: mazhongliang@nuc.edu.cn

  • Received Date: May 11, 2022
  • Revised Date: July 04, 2022
  • Accepted Date: July 14, 2022
  • Available Online: December 05, 2023
  • Published Date: October 30, 2022
  • To study the evolution of nanoparticles during Al wire electrical explosion, a nanoparticle formation model that considered layered motion was developed, and an experimental system was set up to carry out electrical explosion experiments using 0.1 mm and 0.2 mm Al wires. The characteristic parameters and evolution process during the formation of nanoparticles were calculated and analyzed. The results show that the maximum velocities of the innermost and outermost layers are about 1200 m·s−1 and 1600 m·s−1, and the velocity of the middle layer is about 1400 m·s−1, respectively. Most of the nanoparticles are formed in the temperature range of 2600 K‒2500 K. The characteristic temperature for the formation of Al nanoparticles is ~2520 K, which is also the characteristic temperature of other parameters. The size distribution range of the formed nanoparticles is 18 to 110 nm, and most of them are around 22 nm. The variation of saturated vapor pressure determines the temperature distribution range of particle nucleation. There is a minimum critical diameter of particles (~25 nm); particles smaller than the critical diameter can grow into larger particles during surface growth. Particle motion has an effect on the surface growth and aggregation process of particles, and also on the distribution area of larger-diameter particles. The simulation results are in good agreement with the experiments. We provide a method to estimate the size and distribution of nanoparticles, which is of great significance to understand the formation process of particles during the evolution of wire electrical explosion.

  • [1]
    Borra J P 2006 J. Phys. D: Appl. Phys. 39 R19 doi: 10.1088/0022-3727/39/2/R01
    [2]
    Ghosh S et al 2019 J. Alloys Compd. 794 645 doi: 10.1016/j.jallcom.2019.04.299
    [3]
    Kumar L S et al 2017 J. Mater. Res. 32 897 doi: 10.1557/jmr.2016.507
    [4]
    Vorozhtsov A et al 2015 MRS Online Proc. Library 1758 44 doi: 10.1557/opl.2015.362
    [5]
    Kurlyandskaya G V et al 2015 IEEE Magn. Lett. 6 3800104 doi: 10.1109/LMAG.2015.2390595
    [6]
    Kurlyandskaya G V et al 2014 J. Alloys Compd. 615 S231 doi: 10.1016/j.jallcom.2013.11.164
    [7]
    Lee Y S et al 2012 Powder Technol. 222 95 doi: 10.1016/j.powtec.2012.02.004
    [8]
    Ilyin A P, Nazarenko O B and Tikhonov D V 2012 J. Nanosci. Nanotechnol. 12 8137 doi: 10.1166/jnn.2012.4515
    [9]
    Ibañez F J and Zamborini F P 2012 Small 8 174 doi: 10.1002/smll.201002232
    [10]
    Lerner M I et al 2016 Powder Technol. 288 371 doi: 10.1016/j.powtec.2015.11.037
    [11]
    Peng C C et al 2016 Curr. Appl. Phys. 16 284 doi: 10.1016/j.cap.2015.12.009
    [12]
    Li X D et al 2019 IEEE Trans. Nanotechnol. 18 1103 doi: 10.1109/TNANO.2019.2946079
    [13]
    Li Y et al 2014 Phys. Plasmas 21 102513 doi: 10.1063/1.4899042
    [14]
    Griego C, Yilmaz N and Atmanli A 2019 Fuel 237 405 doi: 10.1016/j.fuel.2018.10.016
    [15]
    Glotov O G et al 2007 Combus., Explos., Shock Waves 43 320 doi: 10.1007/s10573-007-0045-y
    [16]
    Yagodnikov D A et al 2006 Combust., Explos., Shock Waves 42 534 doi: 10.1007/s10573-006-0085-8
    [17]
    Reddy V S et al 2009 Org. Electron. 10 138 doi: 10.1016/j.orgel.2008.10.014
    [18]
    Zhong X L, Wong W L E and Gupta M 2007 Acta Mater. 55 6338 doi: 10.1016/j.actamat.2007.07.039
    [19]
    Lerner M I et al 2016 Powder Technol. 295 307 doi: 10.1016/j.powtec.2016.04.005
    [20]
    Bai J et al 2019 J. Phys. D: Appl. Phys. 52 425201 doi: 10.1088/1361-6463/ab3362
    [21]
    Sindhu T K, Sarathi R and Chakravarthy S R 2008 Nanotechnology 19 025703 doi: 10.1088/0957-4484/19/02/025703
    [22]
    Prakash A, Bapat A P and Zachariah M R 2003 Aerosol Sci. Technol. 37 892 doi: 10.1080/02786820300933
    [23]
    Friedlander S K 1983 Ann. New York Acad. Sci. 404 354 doi: 10.1111/j.1749-6632.1983.tb19497.x
    [24]
    Bai J, Shi Z Q and Jia S L 2017 J. Phys. D: Appl. Phys. 50 075301 doi: 10.1088/1361-6463/aa5615
    [25]
    Shi H T et al 2019 Plasma Sources Sci. Technol. 28 085010 doi: 10.1088/1361-6595/ab216f
    [26]
    Mukherjee D, Sonwane C G and Zachariah M R 2003 J. Chem. Phys. 119 3391 doi: 10.1063/1.1580098
    [27]
    Zhang J B et al 2020 Phys. Plasmas 27 023510 doi: 10.1063/1.5124409
    [28]
    Kotov Y A 2003 J. Nanopart. Res. 5 539 doi: 10.1023/B:NANO.0000006069.45073.0b
    [29]
    Tkachenko S I, Vorob'ev V S and Malyshenko S P 2004 J. Phys. D: Appl. Phys. 37 495 doi: 10.1088/0022-3727/37/3/030
    [30]
    Bora B et al 2014 Appl. Phys. Lett. 104 223108 doi: 10.1063/1.4881838
    [31]
    Kwon Y S et al 2001 Scr. Mater. 44 2247 doi: 10.1016/S1359-6462(01)00757-6
    [32]
    Romanova V M et al 2021 J. Phys. D: Appl. Phys. 54 175201 doi: 10.1088/1361-6463/abdce5
    [33]
    Romanova V M et al 2019 Matter Radiat. Extremes 4 026401 doi: 10.1063/1.5085487
    [34]
    Wang K et al 2020 Phys. Plasmas 27 112102 doi: 10.1063/5.0018965
    [35]
    Tkachenko S I et al 2009 Plasma Phys. Rep. 35 734 doi: 10.1134/S1063780X09090037
    [36]
    Yin G F et al 2019 J. Phys. D: Appl. Phys. 52 374002 doi: 10.1088/1361-6463/ab2ab5
    [37]
    Shi H T et al 2019 Appl. Phys. Lett. 115 084101 doi: 10.1063/1.5117313
    [38]
    Rososhek A et al 2019 Phys. Plasmas 26 042302 doi: 10.1063/1.5092321
    [39]
    Efimov S et al 2008 Phys. Plasmas 15 112703 doi: 10.1063/1.3023156
  • Related Articles

    [1]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [2]Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [5]CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10
    [6]LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11
    [7]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [8]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [9]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07
    [10]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.
  • Cited by

    Periodical cited type(12)

    1. Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c
    2. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372
    5. Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692
    8. Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022
    9. Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656
    10. Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4
    11. Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b
    12. Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5

    Other cited types(0)

Catalog

    Article views (61) PDF downloads (56) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return