Citation: | Jiangang FANG, Wei YAN, Zhongyong CHEN, Xiaobo ZHANG, Xixuan CHEN, Junli ZHANG, Feiyue MAO, You LI, Lingke MOU, Yu ZHONG, Feng LI, Weikang ZHANG, Fanxi LIU, Guinan ZOU, Song ZHOU, Da LI, Li GAO, Donghui XIA, Zhoujun YANG, Zhipeng CHEN, Nengchao WANG, Yonghua DING, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Investigation of electron cyclotron current drive efficiency on the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124016. DOI: 10.1088/2058-6272/aca86e |
Electron cyclotron current drive (ECCD) efficiency research is of great importance for the neoclassical tearing mode (NTM) stabilization. Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction. ECCD efficiency has been investigated on the J-TEXT tokamak. The electron cyclotron wave (ECW) power scan was performed to obtain the current drive efficiency. The current drive efficiency is derived to be approximately η0=(0.06–0.16)×1019 A m-2 W-1 on the J-TEXT tokamak. The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency, which will enhance the ECCD efficiency. At the plasma current of Ip=100 kA and electron density of ne=1.5×1019 m-3, the ratio of Spitzer conductivity between omhic (OH) and ECCD phases is considered and the experimental data have been corrected. The correction results show that the current drive efficiency η1 caused by the fast electron hot conductivity decreases by approximately 79%. It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.
This work is supported by the National Magnetic Confinement Fusion Energy R & D Program of China (No. 2019YFE03010004), the National Key R & D Program of China (No. 2018YFE0309100), National Natural Science Foundation of China (Nos. 11775089, 11905077, 51821005).
[1] |
ITER Physics Expert Group on Energetic Particles 1999 Nucl. Fusion 39 2495 doi: 10.1088/0029-5515/39/12/306
|
[2] |
Zohm H et al 1999 Nucl. Fusion 39 577 doi: 10.1088/0029-5515/39/5/101
|
[3] |
Kasparek W et al 2016 Nucl. Fusion 56 126001 doi: 10.1088/0029-5515/56/12/126001
|
[4] |
Petty C C et al 2004 Nucl. Fusion 44 243 doi: 10.1088/0029-5515/44/2/004
|
[5] |
Welander A S et al 2013 Plasma Phys. Control. Fusion 55 124033 doi: 10.1088/0741-3335/55/12/124033
|
[6] |
Choi W et al 2018 Nucl. Fusion 58 036022 doi: 10.1088/1741-4326/aaa6e3
|
[7] |
Sheikh U A et al 2018 Nucl. Fusion 58 106026 doi: 10.1088/1741-4326/aad924
|
[8] |
Kong M et al 2022 Plasma Phys. Control. Fusion 64 044008 doi: 10.1088/1361-6587/ac48be
|
[9] |
Wang X J et al 2022 Nucl. Fusion 62 066007 doi: 10.1088/1741-4326/ac55b9
|
[10] |
Li J C et al 2019 Phys. Plasmas 26 032505 doi: 10.1063/1.5087695
|
[11] |
Li J C et al 2016 Chin. Phys. B 25 045201 doi: 10.1088/1674-1056/25/4/045201
|
[12] |
Alikaev V V et al 2000 Plasma Phys. Rep. 26 177 doi: 10.1134/1.952849
|
[13] |
Razumova K A et al 2000 Plasma Phys. Control. Fusion 42 973 doi: 10.1088/0741-3335/42/9/303
|
[14] |
Chapman I T et al 2013 Plasma Phys. Control. Fusion 55 065009 doi: 10.1088/0741-3335/55/6/065009
|
[15] |
Westerhof E et al 2001 Fusion Eng. Des. 53 259 doi: 10.1016/S0920-3796(00)00499-3
|
[16] |
Sauter O et al 2001 Phys. Plasmas 8 2199 doi: 10.1063/1.1355317
|
[17] |
Tanaka H et al 1991 Nucl. Fusion 31 1673 doi: 10.1088/0029-5515/31/9/006
|
[18] |
Sauter O et al 2000 Phys. Rev. Lett. 84 3322 doi: 10.1103/PhysRevLett.84.3322
|
[19] |
Erckmann V and Gasparino U 1994 Plasma Phys. Control. Fusion 36 1869 doi: 10.1088/0741-3335/36/12/001
|
[20] |
Lloyd B 1998 Plasma Phys. Control. Fusion 40 A119 doi: 10.1088/0741-3335/40/8A/010
|
[21] |
Petty C C et al 1995 Nucl. Fusion 35 773 doi: 10.1088/0029-5515/35/7/I02
|
[22] |
Kirneva N A 2001 Plasma Phys. Control. Fusion 43 A195 doi: 10.1088/0741-3335/43/12A/314
|
[23] |
Razumova K A et al 1994 Phys. Plasmas 1 1554 doi: 10.1063/1.870706
|
[24] |
Alikaev V V et al 1995 Nucl. Fusion 35 369 doi: 10.1088/0029-5515/35/4/I01
|
[25] |
Esipchuk Y V 1995 Plasma Phys. Control. Fusion 37 A267 doi: 10.1088/0741-3335/37/11A/018
|
[26] |
Todd T N 1993 Plasma Phys. Control. Fusion 35 B231 doi: 10.1088/0741-3335/35/SB/019
|
[27] |
James R A et al 1992 Phys. Rev. A 45 8783 doi: 10.1103/PhysRevA.45.8783
|
[28] |
Petty C C et al 2002 Nucl. Fusion 42 1366 doi: 10.1088/0029-5515/42/12/303
|
[29] |
Li J C et al 2015 Phys. Plasmas 22 102510 doi: 10.1063/1.4933355
|
[30] |
Giruzzi G et al 1997 Nucl. Fusion 37 673 doi: 10.1088/0029-5515/37/5/I09
|
[31] |
Chen Z Y et al 2005 Chin. Phys. Lett. 22 900 doi: 10.1088/0256-307X/22/4/034
|
[32] |
Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
|
[33] |
Chen J et al 2014 Rev. Sci. Instrum. 85 11D303 doi: 10.1063/1.4891603
|
[34] |
Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112 doi: 10.1063/1.4960167
|
[35] |
Yan W et al 2016 Rev. Sci. Instrum. 87 11E318 doi: 10.1063/1.4960060
|
[36] |
Zhang J L et al 2020 IEEE Trans. Plasma Sci. 48 1560 doi: 10.1109/TPS.2019.2951816
|
[37] |
Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
|
[38] |
Zhang X B et al 2022 Plasma Sci. Technol. 24 064007 doi: 10.1088/2058-6272/ac4ee6
|
[39] |
Fisch N J 1985 Phys. Fluids 28 245 doi: 10.1063/1.865186
|
[40] |
Luce T C et al 1999 Phys. Rev. Lett. 83 4550 doi: 10.1103/PhysRevLett.83.4550
|
[41] |
Fisch N J 1987 Rev. Mod. Phys. 59 175 doi: 10.1103/RevModPhys.59.175
|
[1] | Boqiong JIANG (江博琼), Xiaodan FEI (费小丹), Shuiliang YAO (姚水良), Qinmin WANG (王钦民), Xinlei YAO (姚馨蕾), Kai XU (徐锴), Zhizong CHEN (陈挚宗). Decomposition of a gas mixture of four n-alkanes using a DBD reactor[J]. Plasma Science and Technology, 2020, 22(11): 115501. DOI: 10.1088/2058-6272/aba2c3 |
[2] | Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e |
[3] | J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba |
[4] | Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6 |
[5] | Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969 |
[6] | Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d |
[7] | Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c |
[8] | MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17 |
[9] | Jee-Hun KO, Sooseok CHOI, Hyun-Woo PARK, Dong-Wha PARK. Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma[J]. Plasma Science and Technology, 2013, 15(9): 923-927. DOI: 10.1088/1009-0630/15/9/17 |
[10] | Takayuki WATANABE, NARENGERILE. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 357-361. DOI: 10.1088/1009-0630/15/4/09 |