Citation: | Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jia LIU. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst[J]. Plasma Science and Technology, 2023, 25(5): 055506. DOI: 10.1088/2058-6272/acae56 |
Non-thermal plasma (NTP) is considered to be a promising technology for the removal of volatile organic compounds; however, its application is limited by low CO2 selectivity and undesirable by-products. To overcome these issues, this paper discusses the degradation of chlorobenzene (CB) in systems of NTP coupled with catalysts, and the influence of catalyst locations in the NTP was investigated. In addition, the interaction between plasma and catalyst was also explored. The results indicated that the degradability of CB was remarkably improved through the combination of NTP with catalysts, and the formation of ozone was effectively inhibited. The degradation efficiency increased from 33.9% to 79.6% at 14 kV in the NTP-catalytic system, while the ozone concentration decreased from 437 to 237 mg m-3, and the degradation efficiency of in plasma catalysis (IPC) systems was superior to that of the post plasma catalysis system, while the inhibition ability of ozone exhibited an opposing trend. In the IPC system, the degradation efficiency was 87.7% at 14 kV, while the ozone concentration was 151 mg m-3. Besides, the plasma did not destroy the pore structure and crystal structure of the catalyst, but affected the surface morphology and redox performance of the catalyst. Thus, NTP coupled catalytic system could improve the degradation performance of CB. Furthermore, the plasma discharge characteristics played a major role in the NTP synergistic catalytic degradation of CB. Finally, based on the experiment analysis results, the general reaction mechanism of CB degradation in an IPC reaction system was proposed.
This work was supported by the National Key Research and Development Program of China (No. 2018YFC1903100), Beijing Municipal Science and Technology Project Program (No. Z191100009119002) and the State Environmental Protection Key Laboratory of Odor Pollution Control (No. 20210504).
[1] |
Lyu X et al 2020 Chemosphere 246 125731 doi: 10.1016/j.chemosphere.2019.125731
|
[2] |
Liu B Y et al 2022 J. Hazard. Mater. 422 126847 doi: 10.1016/j.jhazmat.2021.126847
|
[3] |
Chang T et al 2021 Plasma Chem. Plasma Process. 41 1239 doi: 10.1007/s11090-021-10195-2
|
[4] |
Lin F W et al 2021 Chem. Eng. J. 404 126534 doi: 10.1016/j.cej.2020.126534
|
[5] |
Zhang S H et al 2018 Chem. Eng. J. 334 2625 doi: 10.1016/j.cej.2017.11.014
|
[6] |
Qian Y et al 2004 Chemosphere 57 127 doi: 10.1016/j.chemosphere.2004.04.044
|
[7] |
Jin X P et al 2021 Appl. Sci. 11 6433 doi: 10.3390/app11146433
|
[8] |
Hu Y X et al 2022 J. Mater. Sci. 57 1536 doi: 10.1007/s10853-021-06739-8
|
[9] |
Liang W J et al 2021 Appl. Catal. A 623 118257 doi: 10.1016/j.apcata.2021.118257
|
[10] |
Li B et al 2020 Sci. Total Environ. 749 141595 doi: 10.1016/j.scitotenv.2020.141595
|
[11] |
Deng W et al 2020 Appl. Catal. B 278 119336 doi: 10.1016/j.apcatb.2020.119336
|
[12] |
Li S J et al 2021 J. Environ. Chem. Eng. 9 106562 doi: 10.1016/j.jece.2021.106562
|
[13] |
Weng X L et al 2020 J. Hazard. Mater. 387 121705 doi: 10.1016/j.jhazmat.2019.121705
|
[14] |
Zou W X et al 2019 Chemosphere 218 845 doi: 10.1016/j.chemosphere.2018.11.175
|
[15] |
Han F L et al 2020 J. Saudi. Chem. Soc. 24 673 doi: 10.1016/j.jscs.2020.07.004
|
[16] |
Chang Z S et al 2020 Plasma Process Polym. 17 1900131 doi: 10.1002/ppap.201900131
|
[17] |
Nguyen V T et al 2020 Plasma Chem. Plasma Process. 40 1207 doi: 10.1007/s11090-020-10088-w
|
[18] |
Saoud W A et al 2019 Appl. Catal. B 241 227 doi: 10.1016/j.apcatb.2018.09.029
|
[19] |
Neyts E C et al 2015 Chem. Rev. 115 13408 doi: 10.1021/acs.chemrev.5b00362
|
[20] |
Yu X et al 2020 J. Clean. Prod. 276 124251 doi: 10.1016/j.jclepro.2020.124251
|
[21] |
Whitehead J C 2016 J. Phys. D: Appl. Phys. 49 243001 doi: 10.1088/0022-3727/49/24/243001
|
[22] |
Fan H Y et al 2011 Plasma Chem. Plasma Process. 31 799 doi: 10.1007/s11090-011-9320-5
|
[23] |
Pan K L and Chang M B 2019 Environ. Sci. Pollut. Res. 26 12948 doi: 10.1007/s11356-019-04714-0
|
[24] |
Jia Z X et al 2017 Plasma Process Polym. 14 1600114 doi: 10.1002/ppap.201600114
|
[25] |
Ogata A et al 2010 Plasma Chem. Plasma Process. 30 33 doi: 10.1007/s11090-009-9206-y
|
[26] |
Yao X H et al 2019 Chemosphere 230 479 doi: 10.1016/j.chemosphere.2019.05.075
|
[27] |
Chang T et al 2018 Chem. Eng. J. 348 15 doi: 10.1016/j.cej.2018.04.186
|
[28] |
Sivachandiran L et al 2015 Chem. Eng. J. 270 327 doi: 10.1016/j.cej.2015.01.055
|
[29] |
Liu Y H C et al 2020 Plasma Sci. Technol. 22 034016 doi: 10.1088/2058-6272/ab69bc
|
[30] |
Zheng B et al 2019 RSC Adv. 9 7447 doi: 10.1039/C9RA00794F
|
[31] |
Xie W et al 2022 J. Hazard. Mater. 440 129751 doi: 10.1016/j.jhazmat.2022.129751
|
[32] |
Wang L et al 2016 Chem. Eng. J. 288 406 doi: 10.1016/j.cej.2015.12.023
|
[33] |
Wu Z L et al 2020 IEEE Trans. Plasma Sci. 48 163 doi: 10.1109/TPS.2019.2959698
|
[34] |
Wang B W et al 2017 Chem. Eng. J. 322 679 doi: 10.1016/j.cej.2017.03.153
|
[35] |
He D D et al 2017 Catal. Today 281 559 doi: 10.1016/j.cattod.2016.06.022
|
[36] |
Allahyari S et al 2014 Ultrason. Sonochem. 21 663 doi: 10.1016/j.ultsonch.2013.09.014
|
[37] |
Gholipour A M et al 2017 Top. Catal. 60 934 doi: 10.1007/s11244-017-0758-4
|
[38] |
Das Neves Gomes C et al 2012 Angew. Chem. Int. Ed. 51 1 doi: 10.1002/anie.201106864
|
[39] |
Li Y Z et al 2014 Chem. Eng. J. 241 251 doi: 10.1016/j.cej.2013.12.036
|
[40] |
Hoseini S et al 2019 J. Clean. Prod. 232 1134 doi: 10.1016/j.jclepro.2019.05.227
|
[41] |
Feng X B et al 2020 J. Hazard. Mater. 383 121143 doi: 10.1016/j.jhazmat.2019.121143
|
[42] |
Li L M, Chu W and Liu Y 2021 J. Mater. Sci. 56 6361 doi: 10.1007/s10853-020-05672-6
|
[43] |
Liang C F et al 2019 Int. J. Hydrogen. Energ. 44 8197 doi: 10.1016/j.ijhydene.2019.02.014
|
[44] |
Xiao G et al 2014 Plasma Chem. Plasma Process. 34 1033 doi: 10.1007/s11090-014-9562-0
|
[45] |
Zhang H et al 2010 Fuel 89 3127 doi: 10.1016/j.fuel.2010.04.014
|
[46] |
Fang R M et al 2018 Chem. Eng. J. 334 2050 doi: 10.1016/j.cej.2017.11.176
|
[47] |
Li H W et al 2017 Chem. Eng. J. 316 61 doi: 10.1016/j.cej.2017.01.070
|
[48] |
Guo H et al 2019 Environ. Sci. Pollut. Res. 26 8237 doi: 10.1007/s11356-019-04264-5
|
[49] |
Wang T et al 2017 Chin. J. Catal. 38 793 doi: 10.1016/S1872-2067(17)62808-0
|
[50] |
Chen Y X et al 2017 Environ. Sci. Technol. 51 2304 doi: 10.1021/acs.est.6b04340
|
[51] |
Yang X Q et al 2017 J. Mater. Chem. A 5 13799 doi: 10.1039/C7TA03888G
|
[52] |
Tang X F et al 2006 Appl. Catal. B 62 265 doi: 10.1016/j.apcatb.2005.08.004
|
[53] |
Yodsanga A et al 2015 Surf. Coat. Technol. 271 217 doi: 10.1016/j.surfcoat.2014.12.025
|
[54] |
Zhang X et al 2021 Sep. Purif. Technol. 257 117973 doi: 10.1016/j.seppur.2020.117973
|
[55] |
Liu X et al 2021 Chemosphere 284 131299 doi: 10.1016/j.chemosphere.2021.131299
|
[56] |
Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30 doi: 10.1016/j.jhazmat.2011.08.060
|
[57] |
Li S J et al 2020 J. Hazard. Mater. 400 123259 doi: 10.1016/j.jhazmat.2020.123259
|
[58] |
Kim H H et al 2006 IEEE Trans. Plasma Sci. 34 984 doi: 10.1109/TPS.2006.875728
|
[59] |
Huang H et al 2020 Appl. Surf. Sci. 503 144290 doi: 10.1016/j.apsusc.2019.144290
|
[60] |
Huu T P et al 2015 Catal. Today 257 86 doi: 10.1016/j.cattod.2015.03.001
|
[61] |
Paulussen S et al 2010 Plasma Sources Sci. Technol. 19 034015 doi: 10.1088/0963-0252/19/3/034015
|
[62] |
Liu J Q et al 2021 Catalysis 11 828 doi: 10.3390/catal11070828
|
[63] |
Maciuca A et al 2012 Appl. Catal. B 125 432 doi: 10.1016/j.apcatb.2012.06.012
|
[64] |
Wang M X et al 2014 Chin. J. Catal. 35 335 doi: 10.1016/S1872-2067(12)60756-6
|
[65] |
Feng X X et al 2018 Catal. Sci. Technol. 8 936 doi: 10.1039/C7CY01934C
|
[66] |
An H T Q et al 2011 Catal. Today 176 474 doi: 10.1016/j.cattod.2010.10.005
|
[67] |
Nie Y N et al 2022 Chemosphere 303 135184 doi: 10.1016/j.chemosphere.2022.135184
|
[68] |
Huang H B et al 2011 IEEE Trans. Plasma Sci. 39 576 doi: 10.1109/TPS.2010.2086498
|
[69] |
Zhu X B et al 2015 Catal. Today 256 108 doi: 10.1016/j.cattod.2015.01.028
|
[70] |
Tu X et al 2012 Appl. Catal. B 125 439 doi: 10.1016/j.apcatb.2012.06.006
|
[71] |
Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011 doi: 10.1088/0963-0252/24/1/015011
|
[72] |
Kim H H et al 2009 J. Phys. D: Appl. Phys. 42 135210 doi: 10.1088/0022-3727/42/13/135210
|
[73] |
Zeng X B et al 2017 Chem. Eng. J. 309 503 doi: 10.1016/j.cej.2016.10.047
|
[74] |
Zhu X B et al 2015 Appl. Catal. B 170 293 doi: 10.1016/j.apcatb.2015.01.032
|
[75] |
Lu M J et al 2015 Catal. Today 242 274 doi: 10.1016/j.cattod.2014.07.026
|
[76] |
Liang W J et al 2013 Chemosphere 92 1390 doi: 10.1016/j.chemosphere.2013.05.042
|
[77] |
Li L et al 2021 Appl. Catal. B 282 119565 doi: 10.1016/j.apcatb.2020.119565
|
[78] |
Zhou W et al 2021 J. Clean. Prod. 288 125502 doi: 10.1016/j.jclepro.2020.125502
|
[79] |
Xie L X et al 2022 Environ. Technol. 43 2743 doi: 10.1080/09593330.2021.1899292
|
[80] |
Blin-Simiand N et al 2005 Plasma Process. Polym. 2 256 doi: 10.1002/ppap.200400088
|
[81] |
Nozaki T et al 2007 Energy Fuels 21 2525 doi: 10.1021/ef070117+
|
[1] | Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd |
[2] | Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb |
[3] | WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06 |
[4] | ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20 |
[5] | CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10 |
[6] | LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11 |
[7] | Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18 |
[8] | Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01 |
[9] | SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07 |
[10] | LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479. |
1. | Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c |
2. | Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372 |
5. | Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692 |
8. | Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022 |
9. | Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656 |
10. | Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4 |
11. | Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b |
12. | Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5 |