Citation: | Yu ZHANG, Haozhe WANG, Tao HE, Yan LI, Ying GUO, Jianjun SHI, Yu XU, Jing ZHANG. The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO2 thin film[J]. Plasma Science and Technology, 2023, 25(6): 065504. DOI: 10.1088/2058-6272/acb24e |
The effects of radio frequency (RF) atmospheric pressure (AP) He/H2 plasma and thermal treatment on the hydrogenation of TiO2 thin films were investigated and compared in this work. The color of the original TiO2 film changes from white to black after being hydrogenated in He/H2 plasma at 160 W (gas temperature ~381 ℃) within 5 min, while the color of the thermally treated TiO2 film did not change significantly even in pure H2 or He/H2 atmosphere with higher temperature (470 ℃) and longer time (30 min). This indicated that a more effective hydrogenation reaction happened through RF AP He/H2 plasma treatment than through pure H2 or He/H2 thermal treatment. The color change of TiO2 film was measured based on the Commission Internationale d'Eclairage L*a*b* color space system. Hydrogenated TiO2 film displayed improved visible light absorption with increased plasma power. The morphology of the cauliflower-like nanoparticles of the TiO2 film surface remained unchanged after plasma processing. X-ray photoelectron spectroscopy results showed that the contents of Ti3+ species and Ti–OH bonds in the plasma-hydrogenated black TiO2 increased compared with those in the thermally treated TiO2. X-ray diffraction (XRD) patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO2 surface layer, while thermal annealing would increase the overall crystallinity. The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO2 surface layer is more drastic than on its inner layer, which was also consistent with transmission electron microscopy results. Optical emission spectra results suggest that numerous active species were generated during RF AP He/H2 plasma processing, while there were no peaks detected from thermal processing. A possible mechanism for the TiO2 hydrogenation process by plasma has been proposed. Numerous active species were generated in the bulk plasma region, accelerated in the sheath region, and bumped toward the TiO2 film, which will react with the TiO2 surface to form OVs and disordered layers. This leads to the tailoring of the band gap of black TiO2 and causes its light absorption to extend into the visible region.
This research was financially supported by National Natural Science Foundation of China (Nos. 12075054, 12205040, 12175036 and 11875104).
[1] |
Fujishima A Honda K 1972 Nature 238 37 doi: 10.1038/238037a0
|
[2] |
Yang H G et al 2008 Nature 453 638 doi: 10.1038/nature06964
|
[3] |
Jiu J T et al 2006 J. Phys. Chem. B 110 2087 doi: 10.1021/jp055824n
|
[4] |
Khan S U M, Al-Shahry M and Ingler W B Jr 2002 Science 297 2243 doi: 10.1126/science.1075035
|
[5] |
Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985 doi: 10.1021/ja8078972
|
[6] |
Zuruzi A S et al 2006 Appl. Phys. Lett. 88 102904 doi: 10.1063/1.2185247
|
[7] |
Armstrong A R et al 2005 Adv. Mater. 17 862 doi: 10.1002/adma.200400795
|
[8] |
Ni M et al 2007 Renew. Sustain. Energy Rev. 11 401 doi: 10.1016/j.rser.2005.01.009
|
[9] |
Bach U et al 1998 Nature 395 583 doi: 10.1038/26936
|
[10] |
Law M et al 2006 J. Phys. Chem. B 110 22652 doi: 10.1021/jp0648644
|
[11] |
Liu J W et al 2009 ACS Appl. Mater. Interfaces 1 1645 doi: 10.1021/am900316f
|
[12] |
Wang X D et al 2014 Chem. Rev. 114 9346 doi: 10.1021/cr400633s
|
[13] |
Kang X L et al 2019 Catalysts 9 191 doi: 10.3390/catal9020191
|
[14] |
Leary R and Westwood A 2011 Carbon 49 741 doi: 10.1016/j.carbon.2010.10.010
|
[15] |
Li H Y et al 2015 Appl. Catal. B: Environ. 172–173 37 doi: 10.1016/j.apcatb.2015.02.008
|
[16] |
Li M Y et al 2017 Mater. Charact. 124 136 doi: 10.1016/j.matchar.2016.12.011
|
[17] |
Xing M Y et al 2011 Chem. Commun. 47 4947 doi: 10.1039/c1cc10537j
|
[18] |
Chen X B et al 2011 Science 331 746 doi: 10.1126/science.1200448
|
[19] |
Wang G M et al 2011 Nano Lett. 11 3026 doi: 10.1021/nl201766h
|
[20] |
Wang Z et al 2013 Adv. Funct. Mater. 23 5444 doi: 10.1002/adfm.201300486
|
[21] |
Yan Y et al 2014 J. Mater. Chem. A 2 12708 doi: 10.1039/C4TA02192D
|
[22] |
Zhu Y M, Liu D S and Meng M 2014 Chem. Commun. 50 6049 doi: 10.1039/C4CC01667J
|
[23] |
Lu H Q et al 2014 RSC Adv. 4 1128 doi: 10.1039/C3RA44493G
|
[24] |
Ren S X et al 2018 Mater. Lett. 228 212 doi: 10.1016/j.matlet.2018.06.009
|
[25] |
Sener M E et al 2022 Green Chem. 24 2499 doi: 10.1039/D1GC03646G
|
[26] |
Zhang Y et al 2021 Plasma Chem. Plasma Process. 41 1313 doi: 10.1007/s11090-021-10185-4
|
[27] |
Haerudin H, Bertel S and Kramer R 1998 J. Chem. Soc. Faraday Trans. 94 1481 doi: 10.1039/a707714i
|
[28] |
Liu H et al 2003 Chemosphere 50 39 doi: 10.1016/S0045-6535(02)00486-1
|
[29] |
Wu H et al 2013 Nanotechnology 24 455401 doi: 10.1088/0957-4484/24/45/455401
|
[30] |
Vázquez-Robaina O et al 2021 J. Phys. Chem. C 125 14366 doi: 10.1021/acs.jpcc.1c00124
|
[31] |
Liu N et al 2016 Chem. Eur. J. 22 13810 doi: 10.1002/chem.201602714
|
[32] |
Liu N et al 2014 Angew. Chem. Int. Ed. 53 14201 doi: 10.1002/anie.201408493
|
[33] |
Liu N et al 2014 Nano Lett. 14 3309 doi: 10.1021/nl500710j
|
[34] |
Wang C C and Chou P H 2016 Nanotechnology 27 325401 doi: 10.1088/0957-4484/27/32/325401
|
[35] |
Chahrour K M et al 2020 Int. J. Hydrog. Energy 45 22674 doi: 10.1016/j.ijhydene.2020.06.078
|
[36] |
Xu Y et al 2019 J. Power Sources 410-411 59 doi: 10.1016/j.jpowsour.2018.10.079
|
[37] |
Mohajernia S et al 2020 J. Mater. Chem. A 8 1432 doi: 10.1039/C9TA10855F
|
[38] |
Wang X D et al 2019 Adv. Energy Mater. 9 1900725 doi: 10.1002/aenm.201900725
|
[39] |
Junior A G et al 2020 Catalysts 10 282 doi: 10.3390/catal10030282
|
[40] |
Teng F et al 2014 Appl. Catal. B: Environ. 148–149 339 doi: 10.1016/j.apcatb.2013.11.015
|
[41] |
Islam S Z et al 2018 Microporous Mesoporous Mater. 261 35 doi: 10.1016/j.micromeso.2017.10.036
|
[42] |
Mohammadizadeh M R et al 2015 Appl. Surf. Sci. 350 43 doi: 10.1016/j.apsusc.2015.03.196
|
[43] |
Xu Y et al 2019 Plasma Chem. Plasma Process. 39 937 doi: 10.1007/s11090-019-09961-0
|
[44] |
Huang X J, Yuan Q H and Ning Z Y 2008 Phys. Plasmas 15 073501
|
[45] |
Huang X J et al 2008 Phys. Plasmas 15 113504
|
[46] |
Kato K, Xin Y Z and Shirai T 2020 Scr. Mater. 177 157 doi: 10.1016/j.scriptamat.2019.10.021
|
[47] |
Xu Y et al 2019 Plasma Sci. Technol. 21 065501 doi: 10.1088/2058-6272/ab033a
|
[48] |
Chen J Y et al 2022 Chemosphere 288 132664 doi: 10.1016/j.chemosphere.2021.132664
|
[49] |
Safeen K et al 2015 J. Phys. D: Appl. Phys. 48 295201 doi: 10.1088/0022-3727/48/29/295201
|
[50] |
Kuznetsov M V, Zhuravlev J F and Gubanov V A 1992 J. Electron Spectrosc. Relat. Phenom. 58 169 doi: 10.1016/0368-2048(92)80016-2
|
[51] |
Sellappan R et al 2011 J. Mol. Catal. A: Chem. 335 136 doi: 10.1016/j.molcata.2010.11.025
|
[52] |
Hannula M et al 2018 Chem. Mater. 30 1199 doi: 10.1021/acs.chemmater.7b02938
|
[53] |
Xu Y et al 2019 Coatings 9 357 doi: 10.3390/coatings9060357
|
[54] |
Miao L et al 2004 J. Cryst. Growth 260 118 doi: 10.1016/j.jcrysgro.2003.08.010
|
[55] |
Zhang W F et al 2000 J. Phys. D: Appl. Phys. 33 912 doi: 10.1088/0022-3727/33/8/305
|
[56] |
Xiang Q J et al 2019 J. Colloid Interface Sci. 556 376 doi: 10.1016/j.jcis.2019.08.033
|
[57] |
Vandevelde T et al 1999 Thin Solid Films 340 159 doi: 10.1016/S0040-6090(98)01410-2
|
[58] |
Wennberg P O et al 1994 Rev. Sci. Instrum. 65 1858 doi: 10.1063/1.1144835
|
[59] |
Hasegawa M 2014 Thermodynamic basis for phase diagrams
Treatise on Process Metallurgy ed S Seetharaman
(Amsterdam: Elsevier) Ch. 3.3 507
|
[60] |
Kubaschewski O and Alcock C B 1979 Metallurgical Thermochemistry 5th edn (Oxford: Pergamon) 378
|
[1] | Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd |
[2] | Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb |
[3] | WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06 |
[4] | ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20 |
[5] | CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10 |
[6] | LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11 |
[7] | Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18 |
[8] | Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01 |
[9] | SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07 |
[10] | LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479. |
1. | Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c |
2. | Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372 |
5. | Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692 |
8. | Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022 |
9. | Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656 |
10. | Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4 |
11. | Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b |
12. | Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5 |