Citation: | Yu ZHANG, Haozhe WANG, Tao HE, Yan LI, Ying GUO, Jianjun SHI, Yu XU, Jing ZHANG. The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO2 thin film[J]. Plasma Science and Technology, 2023, 25(6): 065504. DOI: 10.1088/2058-6272/acb24e |
The effects of radio frequency (RF) atmospheric pressure (AP) He/H2 plasma and thermal treatment on the hydrogenation of TiO2 thin films were investigated and compared in this work. The color of the original TiO2 film changes from white to black after being hydrogenated in He/H2 plasma at 160 W (gas temperature ~381 ℃) within 5 min, while the color of the thermally treated TiO2 film did not change significantly even in pure H2 or He/H2 atmosphere with higher temperature (470 ℃) and longer time (30 min). This indicated that a more effective hydrogenation reaction happened through RF AP He/H2 plasma treatment than through pure H2 or He/H2 thermal treatment. The color change of TiO2 film was measured based on the Commission Internationale d'Eclairage L*a*b* color space system. Hydrogenated TiO2 film displayed improved visible light absorption with increased plasma power. The morphology of the cauliflower-like nanoparticles of the TiO2 film surface remained unchanged after plasma processing. X-ray photoelectron spectroscopy results showed that the contents of Ti3+ species and Ti–OH bonds in the plasma-hydrogenated black TiO2 increased compared with those in the thermally treated TiO2. X-ray diffraction (XRD) patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO2 surface layer, while thermal annealing would increase the overall crystallinity. The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO2 surface layer is more drastic than on its inner layer, which was also consistent with transmission electron microscopy results. Optical emission spectra results suggest that numerous active species were generated during RF AP He/H2 plasma processing, while there were no peaks detected from thermal processing. A possible mechanism for the TiO2 hydrogenation process by plasma has been proposed. Numerous active species were generated in the bulk plasma region, accelerated in the sheath region, and bumped toward the TiO2 film, which will react with the TiO2 surface to form OVs and disordered layers. This leads to the tailoring of the band gap of black TiO2 and causes its light absorption to extend into the visible region.
This research was financially supported by National Natural Science Foundation of China (Nos. 12075054, 12205040, 12175036 and 11875104).
[1] |
Fujishima A Honda K 1972 Nature 238 37 doi: 10.1038/238037a0
|
[2] |
Yang H G et al 2008 Nature 453 638 doi: 10.1038/nature06964
|
[3] |
Jiu J T et al 2006 J. Phys. Chem. B 110 2087 doi: 10.1021/jp055824n
|
[4] |
Khan S U M, Al-Shahry M and Ingler W B Jr 2002 Science 297 2243 doi: 10.1126/science.1075035
|
[5] |
Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985 doi: 10.1021/ja8078972
|
[6] |
Zuruzi A S et al 2006 Appl. Phys. Lett. 88 102904 doi: 10.1063/1.2185247
|
[7] |
Armstrong A R et al 2005 Adv. Mater. 17 862 doi: 10.1002/adma.200400795
|
[8] |
Ni M et al 2007 Renew. Sustain. Energy Rev. 11 401 doi: 10.1016/j.rser.2005.01.009
|
[9] |
Bach U et al 1998 Nature 395 583 doi: 10.1038/26936
|
[10] |
Law M et al 2006 J. Phys. Chem. B 110 22652 doi: 10.1021/jp0648644
|
[11] |
Liu J W et al 2009 ACS Appl. Mater. Interfaces 1 1645 doi: 10.1021/am900316f
|
[12] |
Wang X D et al 2014 Chem. Rev. 114 9346 doi: 10.1021/cr400633s
|
[13] |
Kang X L et al 2019 Catalysts 9 191 doi: 10.3390/catal9020191
|
[14] |
Leary R and Westwood A 2011 Carbon 49 741 doi: 10.1016/j.carbon.2010.10.010
|
[15] |
Li H Y et al 2015 Appl. Catal. B: Environ. 172–173 37 doi: 10.1016/j.apcatb.2015.02.008
|
[16] |
Li M Y et al 2017 Mater. Charact. 124 136 doi: 10.1016/j.matchar.2016.12.011
|
[17] |
Xing M Y et al 2011 Chem. Commun. 47 4947 doi: 10.1039/c1cc10537j
|
[18] |
Chen X B et al 2011 Science 331 746 doi: 10.1126/science.1200448
|
[19] |
Wang G M et al 2011 Nano Lett. 11 3026 doi: 10.1021/nl201766h
|
[20] |
Wang Z et al 2013 Adv. Funct. Mater. 23 5444 doi: 10.1002/adfm.201300486
|
[21] |
Yan Y et al 2014 J. Mater. Chem. A 2 12708 doi: 10.1039/C4TA02192D
|
[22] |
Zhu Y M, Liu D S and Meng M 2014 Chem. Commun. 50 6049 doi: 10.1039/C4CC01667J
|
[23] |
Lu H Q et al 2014 RSC Adv. 4 1128 doi: 10.1039/C3RA44493G
|
[24] |
Ren S X et al 2018 Mater. Lett. 228 212 doi: 10.1016/j.matlet.2018.06.009
|
[25] |
Sener M E et al 2022 Green Chem. 24 2499 doi: 10.1039/D1GC03646G
|
[26] |
Zhang Y et al 2021 Plasma Chem. Plasma Process. 41 1313 doi: 10.1007/s11090-021-10185-4
|
[27] |
Haerudin H, Bertel S and Kramer R 1998 J. Chem. Soc. Faraday Trans. 94 1481 doi: 10.1039/a707714i
|
[28] |
Liu H et al 2003 Chemosphere 50 39 doi: 10.1016/S0045-6535(02)00486-1
|
[29] |
Wu H et al 2013 Nanotechnology 24 455401 doi: 10.1088/0957-4484/24/45/455401
|
[30] |
Vázquez-Robaina O et al 2021 J. Phys. Chem. C 125 14366 doi: 10.1021/acs.jpcc.1c00124
|
[31] |
Liu N et al 2016 Chem. Eur. J. 22 13810 doi: 10.1002/chem.201602714
|
[32] |
Liu N et al 2014 Angew. Chem. Int. Ed. 53 14201 doi: 10.1002/anie.201408493
|
[33] |
Liu N et al 2014 Nano Lett. 14 3309 doi: 10.1021/nl500710j
|
[34] |
Wang C C and Chou P H 2016 Nanotechnology 27 325401 doi: 10.1088/0957-4484/27/32/325401
|
[35] |
Chahrour K M et al 2020 Int. J. Hydrog. Energy 45 22674 doi: 10.1016/j.ijhydene.2020.06.078
|
[36] |
Xu Y et al 2019 J. Power Sources 410-411 59 doi: 10.1016/j.jpowsour.2018.10.079
|
[37] |
Mohajernia S et al 2020 J. Mater. Chem. A 8 1432 doi: 10.1039/C9TA10855F
|
[38] |
Wang X D et al 2019 Adv. Energy Mater. 9 1900725 doi: 10.1002/aenm.201900725
|
[39] |
Junior A G et al 2020 Catalysts 10 282 doi: 10.3390/catal10030282
|
[40] |
Teng F et al 2014 Appl. Catal. B: Environ. 148–149 339 doi: 10.1016/j.apcatb.2013.11.015
|
[41] |
Islam S Z et al 2018 Microporous Mesoporous Mater. 261 35 doi: 10.1016/j.micromeso.2017.10.036
|
[42] |
Mohammadizadeh M R et al 2015 Appl. Surf. Sci. 350 43 doi: 10.1016/j.apsusc.2015.03.196
|
[43] |
Xu Y et al 2019 Plasma Chem. Plasma Process. 39 937 doi: 10.1007/s11090-019-09961-0
|
[44] |
Huang X J, Yuan Q H and Ning Z Y 2008 Phys. Plasmas 15 073501
|
[45] |
Huang X J et al 2008 Phys. Plasmas 15 113504
|
[46] |
Kato K, Xin Y Z and Shirai T 2020 Scr. Mater. 177 157 doi: 10.1016/j.scriptamat.2019.10.021
|
[47] |
Xu Y et al 2019 Plasma Sci. Technol. 21 065501 doi: 10.1088/2058-6272/ab033a
|
[48] |
Chen J Y et al 2022 Chemosphere 288 132664 doi: 10.1016/j.chemosphere.2021.132664
|
[49] |
Safeen K et al 2015 J. Phys. D: Appl. Phys. 48 295201 doi: 10.1088/0022-3727/48/29/295201
|
[50] |
Kuznetsov M V, Zhuravlev J F and Gubanov V A 1992 J. Electron Spectrosc. Relat. Phenom. 58 169 doi: 10.1016/0368-2048(92)80016-2
|
[51] |
Sellappan R et al 2011 J. Mol. Catal. A: Chem. 335 136 doi: 10.1016/j.molcata.2010.11.025
|
[52] |
Hannula M et al 2018 Chem. Mater. 30 1199 doi: 10.1021/acs.chemmater.7b02938
|
[53] |
Xu Y et al 2019 Coatings 9 357 doi: 10.3390/coatings9060357
|
[54] |
Miao L et al 2004 J. Cryst. Growth 260 118 doi: 10.1016/j.jcrysgro.2003.08.010
|
[55] |
Zhang W F et al 2000 J. Phys. D: Appl. Phys. 33 912 doi: 10.1088/0022-3727/33/8/305
|
[56] |
Xiang Q J et al 2019 J. Colloid Interface Sci. 556 376 doi: 10.1016/j.jcis.2019.08.033
|
[57] |
Vandevelde T et al 1999 Thin Solid Films 340 159 doi: 10.1016/S0040-6090(98)01410-2
|
[58] |
Wennberg P O et al 1994 Rev. Sci. Instrum. 65 1858 doi: 10.1063/1.1144835
|
[59] |
Hasegawa M 2014 Thermodynamic basis for phase diagrams
Treatise on Process Metallurgy ed S Seetharaman
(Amsterdam: Elsevier) Ch. 3.3 507
|
[60] |
Kubaschewski O and Alcock C B 1979 Metallurgical Thermochemistry 5th edn (Oxford: Pergamon) 378
|
[1] | Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7 |
[2] | Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef |
[3] | Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2 |
[4] | Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156 |
[5] | ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02 |
[6] | WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06 |
[7] | LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04 |
[8] | LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06 |
[9] | A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04 |
[10] | Benyssaad KRALOUA, Ali HENNAD. Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method[J]. Plasma Science and Technology, 2012, 14(9): 802-807. DOI: 10.1088/1009-0630/14/9/06 |
1. | Pan, D., Wen, D., Guo, X. et al. Factors Influencing the Sterilization of E. coli in a High-Voltage Electric Field: Electric Field Strength, Temperature and Humidity. Processes, 2025, 13(2): 551. DOI:10.3390/pr13020551 | |
2. | Ji, Y., Giangrande, P., Zhao, W. et al. Combined Effect of Short Rise Time and Relative Humidity on the Partial Discharge Inception Mechanism in Rotating Electrical Machines Insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(1): 474-483. DOI:10.1109/TDEI.2024.3404835 | |
3. | Wang, S., Mai, J., Wang, L. A Numerical Simulation Study on DC Positive Corona Discharge Characteristics at the Conductor’s Tip Defect. Applied Sciences (Switzerland), 2023, 13(18): 10472. DOI:10.3390/app131810472 | |
4. | Li, M., Ma, Z., Xia, J. et al. Investigation of Humid Air on Corona Onset Voltage in Wire-Plane Electrodes Under AC-DC Composite Voltages via Test and Modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(3): 1105-1114. DOI:10.1109/TDEI.2023.3248528 | |
5. | Tian, P., Shan, Y., Liu, G. et al. Analysis of Temperature Sensitivity Parameters in Hydrodynamic Model of Streamer. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3273611 | |
6. | Ma, Z., Xia, J., He, X. et al. Experimental and numerical study on corona onset threshold under combined AC-DC voltages in Wire-Plane electrodes. International Journal of Electrical Power and Energy Systems, 2022. DOI:10.1016/j.ijepes.2022.108479 | |
7. | Shen, N., Su, Z., Zhang, Y. et al. Influence of Humidity on the Charge Characteristics of Suspension Droplets and the Characteristics of Ion Flow Field | [湿度对悬浮液滴荷电特性及离子流场特性的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(13): 3422-3430 and 3452. DOI:10.19595/j.cnki.1000-6753.tces.210624 | |
8. | Shen, N., Su, Z., Zhang, Y. et al. The influence of charge characteristics of suspension droplets on the ion flow field in different temperatures and humidity. Plasma Science and Technology, 2022, 24(4): 044004. DOI:10.1088/2058-6272/ac5afb | |
9. | He, Z., Zhu, J., Zhu, J. et al. Experiments and analysis of corona inception voltage under combined AC-DC voltages at various air pressure and humidity in rod to plane electrodes. CSEE Journal of Power and Energy Systems, 2021, 7(4): 875-888. DOI:10.17775/CSEEJPES.2020.03780 | |
10. | Yan, J., Liang, G., Lian, H. et al. Effect of plasma step gradient modification on surface electrical properties of epoxy resin. Plasma Science and Technology, 2021, 23(6): 064012. DOI:10.1088/2058-6272/abef55 | |
11. | Hussain, K., Lu, T. Analysis of Environmental Temperature Effect on Positive and Negative Corona Discharge using Self-Consistent Plasma Model. 2021. DOI:10.1109/AEERO52475.2021.9708370 | |
12. | Shen, N., Zhang, Y., Xu, P. et al. Calculation and Analysis of Ground-level Total Electric Field of HVDC Lines in Fog Based on Meteorological Data | [基于气象数据的雾天气条件下高压直流输电线路合成电场计算分析]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(23): 7805-7815. DOI:10.13334/j.0258-8013.pcsee.200725 | |
13. | Lian, H., Yan, J., Xie, J. et al. Enhancement of surface insulation properties of alumina/epoxy composites through ZrO2 film sprayed by plasma atomization. Polymer Composites, 2020, 41(10): 4020-4030. DOI:10.1002/pc.25689 | |
14. | Jie, Z., Zichen, H., Jiale, W. et al. Experimental studies on effects of surface morphologies on corona characteristics of conductors subjected to positive DC voltages. High Voltage, 2020, 5(4): 489-497. DOI:10.1049/hve.2019.0317 | |
15. | Liu, S., Li, S., Jiang, Y. et al. Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines. Plasma Science and Technology, 2020, 22(4): 044001. DOI:10.1088/2058-6272/ab571e |