Advanced Search+
FANG Zhi, LEI Xiao, CAI Lingling, QIU Yuchang, Edmund KUFFEL. Study on the Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air and Its Influencing Factors[J]. Plasma Science and Technology, 2011, 13(6): 676-681.
Citation: FANG Zhi, LEI Xiao, CAI Lingling, QIU Yuchang, Edmund KUFFEL. Study on the Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air and Its Influencing Factors[J]. Plasma Science and Technology, 2011, 13(6): 676-681.

Study on the Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air and Its Influencing Factors

More Information
  • Received Date: July 21, 2011
  • The homogeneous dielectric barrier discharge (DBD) in atmospheric air between two symmetric-columnar copper electrodes with epoxy plates as the dielectric barriers is generated using a μs pulse high voltage power supply. The discharge characteristics are studied by measurement of its electrical discharge parameters and observation of its light emission phenomena, and the main discharge parameters of the homogenous DBD, such as discharge current and average discharge power, are calculated. Results show that the discharge generated is a homogeneous one with one larger single current pulse of about 2μs duration appearing in each voltage pulse, and its light emission is radially homogeneous and covers the entire surface of the two electrodes. The influences of applied voltage amplitude, air gap distance and barrier thickness on the transition of discharge modes are studied. With the increase of air gap distance, the discharge will transit from homogeneous mode to filamentary mode. The higher the thickness of dielectric barriers, the larger the air gap distance for generating the homogeneous discharge mode. The average discharge power increases non-linearly with increasing applied voltage amplitude, and decreases non-linearly with the increase of air gap distance and barrier thickness. In order to generate stable and homogeneous DBD with high discharge power, thin barriers distance should be used, and higher applied voltage amplitude should be applied to small air gap.
  • Related Articles

    [1]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [2]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [3]Xudong WANG (王旭东), Liuwei XU (许留伟), Peng FU (傅鹏), Ji LI (李冀), Yanan WU (吴亚楠). Harmonics analysis of the ITER poloidal field converter based on a piecewise method[J]. Plasma Science and Technology, 2017, 19(12): 125602. DOI: 10.1088/2058-6272/aa86a5
    [4]YUAN Hongwen (袁红文), FU Peng (傅鹏), GAO Ge (高格), HUANG Liansheng (黄连生), SONG Zhiquan (宋执权), HE Shiying (何诗英), WU Yanan (吴亚楠), DONG Lin (董琳), WANG Min (王敏), FANG Tongzhen (房同珍). On the Sequential Control of ITER Poloidal Field Converters for Reactive Power Reduction[J]. Plasma Science and Technology, 2014, 16(12): 1147-1152. DOI: 10.1088/1009-0630/16/12/11
    [5]LI Jinchao(李金超), Song Zhiquan(宋执权), XU Liuwei(许留伟), FU Peng(傅鹏), GUO Bin(郭斌), LI Sen(李森), DONG Lin(董琳), WANG Min(王敏). Current Sharing Analysis of Arm Prototype for ITER PF Converter Bridge[J]. Plasma Science and Technology, 2014, 16(3): 283-287. DOI: 10.1088/1009-0630/16/3/20
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [7]ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16
    [8]Long Feng(龙风), Liu Fang(刘方), Wu Yu(武玉), Ni Zhipeng(倪志鹏). The First Benchmarking of ITER BR Nb3Sn Strand of CNDA[J]. Plasma Science and Technology, 2012, 14(9): 847-849. DOI: 10.1088/1009-0630/14/9/14
    [9]CHEN Peng, FU Peng, SONG Zhiquan. An Improvement on Current Sharing Characteristics of Poloidal Field (PF) AC-DC Converters[J]. Plasma Science and Technology, 2011, 13(4): 497-501.
    [10]LIU Bo, WU Yu. Test and Analysis of China's First Short Conductor Sample for ITER Toroidal Field Coils[J]. Plasma Science and Technology, 2011, 13(1): 106-110.

Catalog

    Article views (726) PDF downloads (449) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return