Advanced Search+
A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04
Citation: A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04

Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity

  • This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein’s relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann’s equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles present in monatomic argon gas are coupled in a self-consistent way with Poisson’s equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return