Advanced Search+
A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04
Citation: A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04

Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity

More Information
  • Received Date: April 13, 2011
  • This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein’s relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann’s equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles present in monatomic argon gas are coupled in a self-consistent way with Poisson’s equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
  • Related Articles

    [1]Qi ZHONG, Yong XIAO. Solving Poisson equation with slowing-down equilibrium distribution for global gyrokinetic simulation[J]. Plasma Science and Technology, 2023, 25(2): 025101. DOI: 10.1088/2058-6272/ac89cf
    [2]Kaibang WU, Lai WEI, Zhengxiong WANG. Analysis of anomalous transport based on radial fractional diffusion equation[J]. Plasma Science and Technology, 2022, 24(4): 045101. DOI: 10.1088/2058-6272/ac41bd
    [3]B HECHELEF, A BOUCHIKHI. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure[J]. Plasma Science and Technology, 2018, 20(11): 115401. DOI: 10.1088/2058-6272/aac693
    [4]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [5]A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad
    [6]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [7]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [8]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [9]LI Xuechen (李雪辰), ZHAO Huanhuan (赵欢欢), JIA Pengying (贾鹏英). Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI: 10.1088/1009-0630/15/11/13
    [10]D. GUENDOUZ, A. HAMID, A. HENNAD. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms[J]. Plasma Science and Technology, 2011, 13(5): 583-590.

Catalog

    Article views (493) PDF downloads (1354) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return