Advanced Search+
B HECHELEF, A BOUCHIKHI. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure[J]. Plasma Science and Technology, 2018, 20(11): 115401. DOI: 10.1088/2058-6272/aac693
Citation: B HECHELEF, A BOUCHIKHI. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure[J]. Plasma Science and Technology, 2018, 20(11): 115401. DOI: 10.1088/2058-6272/aac693

Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure

More Information
  • Received Date: February 09, 2018
  • In this paper, we focused on the identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure. We considered four gas mixtures: 90%Ne-10%Xe, 80%Ne-20%Xe, 70%Ne-30%Xe and 50%Ne-50%Xe at 1.5 Torr. The range of the gap voltage is 150–500 V. A one-dimensional fluid model with multiple species was used in this work, and the metastable state of the atoms as well as the radiation effects were integrated into the model too. The input data changed for each percentage in the gas mixture, and was calculated by BOLSIG+ software. The parameters of particle transport and their rate coefficients strictly depend on the mean electron energy. The results show that the neon ion density is negligible compared to the xenon ion density, mostly in the case of 50%Ne-50%Xe.
  • [1]
    Chapman B N 1980 Glow Discharge Processes (New York: Wiley)
    [2]
    Harrison W W 1988 Glow Discharge Mass Spectrometry (New York: Wiley)
    [3]
    Marcus R K 1993 Glow Discharge Spectroscopies (New York: Plenum Press)
    [4]
    Meyyappan M and Kreskovsky J P L 1990 J. Appl. Phys. 68 1506
    [5]
    Bogarets A, Gijbels R and Goedheer W J 1995 J. Appl. Phys. 78 2233
    [6]
    Bouchikhi A and Hamid A 2010 Plasma Sci. Technol. 12 59
    [7]
    Bouchikhi A 2017 Plasma Sci. Technol. 19 095403
    [8]
    Bouchikhi A 2018 Can. J. Phys. 96 62
    [9]
    Kolobov V I and Godyak V A 1995 IEEE Trans. Plasma Sci. 23 503
    [10]
    Zhu X M et al 2012 Plasma Sources Sci. Technol. 21 024003
    [11]
    Wei W, Sun J and Guo B 2007 Eur. Phys. J. Appl. Phys. 37 331
    [12]
    Panchenko A N et al 1999 Russ. Phys. J 42 557
    [13]
    Hassouba M A and Mehanna E A 2009 Int. J. Phys. Sci 4 713
    [14]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [15]
    Van Gaens W and Bogaerts A 2014 J. Phys. D Appl. Phys. 47 079502
    [16]
    Pike E W 1936 Phys. Rev. 49 513
    [17]
    Kolokolov N B, Kudrjavtsev A A and Blagoev A B 1994 Phys. Scr. 50 371
    [18]
    Sheverev V A, Stepaniuk V P and Lister G G 2002 J. Appl. Phys. 92 3454
    [19]
    Galy J et al 1993 J. Phys. B 26 447
    [20]
    Vriens L and Smeets A H M 1980 Phys. Rev. A 22 940
    [21]
    Levin L A et al 1981 IEEE J. Quantum Electron. 17 2282
    [22]
    Becker M M, Loffhagen D and Schmidt W 2009 Comput. Phys. Commun. 180 1230
    [23]
    Alili T, Bouchikhi A and Rizouga M 2016 Can. J. Phys. 94 731
    [24]
    Frost L S 1957 Phys. Rev. 105 354
    [25]
    Piscitelli D et al 2003 Phys. Rev. E 68 046408
    [26]
    Meunier J, Belenguer P and Boeuf J P 1995 J. Appl. Phys. 78 731
    [27]
    Almeida P G C, Benilov M S and Faria M J 2010 Plasma Sources Sci. Technol. 19 025019
  • Related Articles

    [1]Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [4]A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]A. Bouchikhi. Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity[J]. Plasma Science and Technology, 2012, 14(11): 965-973. DOI: 10.1088/1009-0630/14/11/04
    [7]GUO Yanqing (郭艳青). Scaling Law of s-wave Valence Proton Distributions[J]. Plasma Science and Technology, 2012, 14(5): 402-404. DOI: 10.1088/1009-0630/14/5/14
    [8]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [9]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
    [10]D. GUENDOUZ, A. HAMID, A. HENNAD. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms[J]. Plasma Science and Technology, 2011, 13(5): 583-590.

Catalog

    Article views (164) PDF downloads (307) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return