Advanced Search+
CHI Yangyang(匙阳阳), ZHANG Yuantao(张远涛). Theoretical Study on the Characteristics of Atmospheric Radio Frequency Discharges by Altering Electrode Gap[J]. Plasma Science and Technology, 2014, 16(6): 582-587. DOI: 10.1088/1009-0630/16/6/08
Citation: CHI Yangyang(匙阳阳), ZHANG Yuantao(张远涛). Theoretical Study on the Characteristics of Atmospheric Radio Frequency Discharges by Altering Electrode Gap[J]. Plasma Science and Technology, 2014, 16(6): 582-587. DOI: 10.1088/1009-0630/16/6/08

Theoretical Study on the Characteristics of Atmospheric Radio Frequency Discharges by Altering Electrode Gap

Funds: supported by National Natural Science Foundation of China (No. 11375107) and the Fundamental Research Funds of Shandong University of China (No. 2012TS067)
More Information
  • Received Date: March 24, 2013
  • In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.
  • 1.Park J, Henins I, Herrmann H W, et al. 2001, J. Appl.Phys., 89: 20
    2 Iza F, Lee J K, Kong M G. 2007, Phys. Rev. Lett., 99: 075004
    3 Moon S Y, Kim D B, Gweon B, et al. 2008, Appl.Phys. Lett., 93: 221506
    4 Yuan X, Raja L L. 2003, IEEE Trans. Plasma Sci., 31: 495
    5.Balcon N, Hagelaar G J M, Boeuf J P. 2008, IEEE.Trans. Plasma Sci., 36: 2782.
    6.Shi J J, Kong M G. 2005, J. Appl. Phys., 97: 023306.
    7.Fridman G, Friedman G, Gutsol A, et al. 2008, Plasma.Process. Polym., 5: 503.
    8.Iza F, Kim G J, Lee S M, et al. 2008, Plasma Process.Polym., 5: 322.
    9.Laroussi M, Fridman A, Satava R M. 2008, Plasma Process. Polym., 5: 495.
    10.Knake N, Niemi K, Reuter S, et al. 2008, Appl. Phys.Lett., 93: 131503.
    11.Liu D X, Iza F, Wang X H, et al. 2011, Appl. Phys.Lett., 98: 221501.
    12.He J, Zhang Y T. 2012, Plasma Process. Polym., 9:919.
    13.Yang X, Moravej M, Nowling G R, et al. 2005, Plasma.Sources Sci. Technol., 14: 314.
    14.Walsh J L, Iza F, Kong M G. 2008, Appl. Phys. Lett.,93: 251502.
    15.Zhang Y T, Cui S Y. 2011, Phys. Plasmas, 18: 083509.
    16.Farouk T, Farouk B, Gutsol A, et al. 2008, Plasma.Sources Sci. Technol., 17: 035015.
    17.Shi J J, Zhang J, Qiu G, et al. 2008, Appl. Phys. Lett.,93: 041502.
    18.Mariotti D, Sankaran R M. 2010, J. Phys. D: Appl.Phys., 43: 323001.
    19.Wagner A J, Mariotti D, Yurchenko K J, et al. 2009,Phys. Rev. E, 80: 065401(R).
    20.Mariotti D. 2008, Appl. Phys. Lett., 92: 151505.
    21.Zhang Y T, Shang W L. 2011, Phys. Plasmas, 18:110701.
    22.Zhang Y T, Lou J, Li Q Q, et al. 2013, IEEE Trans.Plasma Sci., 41: 414.
    23.Kulikovsky A A. 1994, J. Phys. D: Appl. Phys., 27:2556.
    24.Zhang Y T, Li Q Q, Lou J, et al. 2010, Appl. Phys.Lett., 97: 141504.
    25.Walsh J L, Zhang Y T, Iza F, et al. 2008, Appl. Phys.Lett., 93: 221505.
    26.Lieberman M A, Lichtenberg A J. 2005, Principles of.Plasma Discharges and Materials Processing. Willey.& Sons, New York.
    27.Kwon H C, Won I H, Lee J K. 2012, Appl. Phys. Lett.,100: 183702.
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [4]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [5]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [6]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (168) PDF downloads (1286) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return