Advanced Search+
Weisheng CUI (崔伟胜), Wenzheng LIU (刘文正), Jia TIAN (田甲), Xiuyang CHEN (陈修阳). Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster[J]. Plasma Science and Technology, 2018, 20(2): 24003-024003. DOI: 10.1088/2058-6272/aa8a5e
Citation: Weisheng CUI (崔伟胜), Wenzheng LIU (刘文正), Jia TIAN (田甲), Xiuyang CHEN (陈修阳). Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster[J]. Plasma Science and Technology, 2018, 20(2): 24003-024003. DOI: 10.1088/2058-6272/aa8a5e

Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

Funds: We thank National Natural Science Foundation of China (No. 51577011) and the Graduate Innovation Project of Beijing Jiaotong University (No. 2016YJS147) for the financial support of this work.
More Information
  • Received Date: July 12, 2017
  • At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.
  • [1]
    Spanjers G G et al 2015 J. Propul. Power 14 11
    [2]
    Keidar M, Boyd I D and Beilis I I 2000 IEEE Trans. Plasma Sci. 28 376
    [3]
    Wu H J, Jiang Y D and Zhang Z Y 2003 J. Propul. Technol. 24 385
    [4]
    Scheuer J T et al 1994 IEEE Trans. Plasma Sci. 22 1015
    [5]
    Goldstein R and Mastrup F N 1966 AIAA J. 4 99
    [6]
    Miyasaka T et al 2013 Vacuum 88 52
    [7]
    Sch?nherr T et al 2015 IEEE Trans. Plasma Sci. 43 226
    [8]
    Brady M E and Aston G 1983 J. Spacecr. Rockets 20 450
    [9]
    Aston G and Pless L C 1982 J. Spacecr. Rockets 19 250
    [10]
    Anderson R A and Brainard J P 1980 J. Appl. Phys. 51 1414
    [11]
    Masten G et al 1994 IEEE Trans. Plasma Sci. 22 1034
    [12]
    Tang J P et al 2010 IEEE Trans. Plasma Sci. 38 53
    [13]
    Liu W Z et al 2014 Plasma Sci. Technol. 16 344
    [14]
    Coaker B M et al 2002 IEEE Trans. Plasma Sci. 21 400
    [15]
    Koizumi H et al 2007 Phys. Plasmas 14 716
  • Related Articles

    [1]Mingming SUN, Jianfei LONG, Weilong GUO, Chao LIU, Yong ZHAO. A study of the influence of different grid structures on plasma characteristics in the discharge chamber of an ion thruster[J]. Plasma Science and Technology, 2023, 25(1): 015509. DOI: 10.1088/2058-6272/ac839a
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [4]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [5]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [6]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [7]Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
    [8]SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05
    [9]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06

Catalog

    Article views (333) PDF downloads (803) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return