Advanced Search+
Sungho SHIN, Youngmin MOON, Jaepil LEE, Hyemin JANG, Euiseok HWANG, Sungho JEONG. Signal processing for real-time identification of similar metals by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34011-034011. DOI: 10.1088/2058-6272/aaed6c
Citation: Sungho SHIN, Youngmin MOON, Jaepil LEE, Hyemin JANG, Euiseok HWANG, Sungho JEONG. Signal processing for real-time identification of similar metals by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34011-034011. DOI: 10.1088/2058-6272/aaed6c

Signal processing for real-time identification of similar metals by laser-induced breakdown spectroscopy

Funds: This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250003).
More Information
  • Received Date: July 23, 2018
  • Laser-induced breakdown spectroscopy (LIBS) is regarded as a promising technique for real- time sorting of scrap metals due to its capability of fast multi-elemental and in-air analysis. This work reports a method for signal processing which ensures high accuracy and high speed during similar metal sorting by LIBS. Similar metals such as aluminum alloys or stainless steel are characterized by nearly the same constituent elements with slight variations in elemental concentration depending on metal type. In the proposed method, the original data matrix is substantially reduced for fast processing by selecting new input variables (spectral lines) using the information for the constituent elements of similar metals. Specifically, principal component analysis (PCA) of full-spectra LIBS data was performed and then, based on the loading plots, the input variables of greater significance were selected in the order of higher weights for each constituent element. The results for the classification test with aluminum alloy, copper alloy, stainless steel and cast steel showed that the classification accuracy of the proposed method was nearly the same as that of full-spectra PCA, but the computation time was reduced by a factor of 20 or more. The results demonstrated that incorporating the information for constituent elements can significantly accelerate classification speed without loss of accuracy.
  • [1]
    Ayres R U 1997 Resour. Conserv. Recycl. 21 145
    [2]
    Martchek K J 2000 The importance of recycling to the environmental profile of metal products ed D L Stewart Jr, J C Daley and R L Stephens Recycling of Metals and Engineered Materials (Pittsburgh: The Minerals, Metals and Materials Society)
    [3]
    Gurell J et al 2012 Spectrochim. Acta B 74–75 46
    [4]
    Werheit P et al 2011 J. Anal. At. Spectrom. 26 2166
    [5]
    Aberkane S M et al 2017 Anal. Methods 9 3696
    [6]
    Liang L et al 2014 Appl. Opt. 53 544
    [7]
    Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (New York: Wiley)
    [8]
    Mehari F et al 2016 Plasma Sci. Technol. 18 654
    [9]
    Kashiwakura S and Wagatsuma K 2015 ISIJ Int. 55 2391
    [10]
    Noll R et al 2014 Spectrochim. Acta B 93 41
    [11]
    Noll R et al 2018 J. Anal. At. Spectrom. 33 945
    [12]
    Vors E, Tchepidjian K and Sirven J B 2016 Spectrochim. Acta B 117 16
    [13]
    Campanella B et al 2017 Spectrochim. Acta B 134 52
    [14]
    Zhang C et al 2018 Sensors 18 95
    [15]
    Schr?der S et al 2013 Icarus 223 61
    [16]
    Myakalwar K A et al 2015 Sci. Rep. 5 13169
    [17]
    Tan M M et al 2012 Appl. Spectrosc. 66 262
    [18]
    Yan C H et al 2016 Anal. Methods 8 6216
    [19]
    Chen X et al 2018 Biomed. Opt. Express 9 1057
    [20]
    Li W T et al 2018 J. Anal. At. Spectrom. 33 461
    [21]
    Moon Y et al 2016 Biomed. Opt. Express 7 1626
    [22]
    Standard Reference Materials in NIST (https://doi.org/10. 6028/NIST.SP.260-176-2018)
    [23]
    Brammer Standard Company, Inc., Houston, USA (http:// brammerstandard.com)
    [24]
    Varmuza K and Filzmoser P 2009 Introduction to Multivariate Statistical Analysis in Chemometrics (Boca Raton, FL: CRC Press)
  • Related Articles

    [1]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [2]Ekta SRIVASTAVA, Hyemin JANG, Sungho SHIN, Janghee CHOI, Sungho JEONG, Euiseok HWANG. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines[J]. Plasma Science and Technology, 2020, 22(1): 15501-015501. DOI: 10.1088/2058-6272/ab481e
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [5]Jung-Hwan IN, Youngmin MOON, Jang-Hee CHOI, Sungho JEONG. Consistency of intensity ratio between spectral lines with similar self-absorption characteristics during ungated laser induced breakdown spectroscopy measurements[J]. Plasma Science and Technology, 2019, 21(3): 34010-034010. DOI: 10.1088/2058-6272/aaed60
    [6]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [7]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [8]Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
    [9]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [10]KONG Haiyang (孔海洋), SUN Lanxiang (孙兰香), HU Jingtao (胡静涛), XIN Yong (辛勇), CONG Zhibo (丛智博). Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 964-970. DOI: 10.1088/1009-0630/17/11/14
  • Cited by

    Periodical cited type(24)

    1. Li, C., Zhao, T., Ren, W. et al. Quantitative analysis of copper-molybdenum slurries based on low energy pulse laser, combined with artificial neural network and principal component analysis. Minerals Engineering, 2024. DOI:10.1016/j.mineng.2024.109010
    2. Spencer, J., Squires, B., McWilliams, B. et al. Laser induced breakdown spectroscopy for composition monitoring of graded Al–Cu alloy surface. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131375
    3. Zeng, Q.-D., Chen, G.-H., Li, W.-X. et al. Classification of Special Steel Based on LIBS Combined With Particle Swarm Optimization and Support Vector Machine | [基于粒子群M支持向量机算法的激光诱导 击穿光谱钢铁快速检测与分类]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(6): 1559-1565. DOI:10.3964/j.issn.1000-0593(2024)06-1559-07
    4. Han, B., Chen, Z., Feng, J. et al. Identification and classification of metal copper based on laser-induced breakdown spectroscopy. Journal of Laser Applications, 2023, 35(3): 032011. DOI:10.2351/7.0001051
    5. Akram, M.A., Holthe, R., Ringen, G. Rapid Sorting of Post-consumer Scrap Aluminium Alloys Based on Laser-Induced Breakdown Spectroscopy (LIBS). IFIP Advances in Information and Communication Technology, 2023. DOI:10.1007/978-3-031-43688-8_18
    6. Zeng, Q., Chen, G., Li, W. et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine. Plasma Science and Technology, 2022, 24(8): 084009. DOI:10.1088/2058-6272/ac72e3
    7. Xu, C., Li, F., Chen, F. et al. Rapid Classification of Laser Induced Breakdown Spectroscopy of Titanium Alloys | [钛合金的激光诱导击穿光谱快速分类]. Guangzi Xuebao/Acta Photonica Sinica, 2022, 51(4): 176-186. DOI:10.3788/gzxb20225104.0430001
    8. Chen, G., Zeng, Q., Li, W. et al. Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network. Optics Express, 2022, 30(6): 9428-9440. DOI:10.1364/OE.451969
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Chen, T., Sun, L., Yu, H. et al. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry. Applied Optics, 2022, 61(7): D22-D29. DOI:10.1364/AO.441098
    11. Aberkane, S.M., Melikechi, N., Yahiaoui, K. LIBS Spectral Treatment. Chemometrics and Numerical Methods in LIBS, 2022. DOI:10.1002/9781119759614.ch4
    12. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    13. You, W., Xia, Y.-P., Huang, Y.-T. et al. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree | [基于CART回归树的LIBS特征变量选择方法研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(10): 3240-3244. DOI:10.3964/j.issn.1000-0593(2021)10-3240-05
    14. Kim, H., Lee, J., Srivastava, E. et al. Front-end signal processing for metal scrap classification using online measurements based on laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106282
    15. Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. DOI:10.1016/j.resconrec.2021.105462
    16. Wang, Y.-W., Zhang, Y., Chen, X.-F. et al. Application progress of laser-induced breakdown spectroscopy in online analysis of metal materials | [激光诱导击穿光谱在金属材料在线分析方面的应用进展]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 7-13. DOI:10.13228/j.boyuan.issn1000-7571.011179
    17. Zhang, Y., Sun, C., Yue, Z. et al. Correlation-based carbon determination in steel without explicitly involving carbon-related emission lines in a LIBS spectrum. Optics Express, 2020, 28(21): 32019-32032. DOI:10.1364/OE.404722
    18. Ytsma, C.R., Knudson, C.A., Dyar, M.D. et al. Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105946
    19. Kim, E., Kim, Y., Srivastava, E. et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020. DOI:10.1016/j.chemolab.2020.104072
    20. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    21. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    22. Srivastava, E., Jang, H., Shin, S. et al. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines. Plasma Science and Technology, 2020, 22(1): 015501. DOI:10.1088/2058-6272/ab481e
    23. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    24. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (169) PDF downloads (302) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return