Advanced Search+
Zhihang ZHAO (赵志航), Xinlao WEI (魏新劳), Shuang SONG (宋爽), Lin CUI (崔林), Longfei ZHANG (张龙飞). A two-dimensional air streamer discharge model based on the improved Helmholtz equation at low temperature and sub-atmospheric pressure[J]. Plasma Science and Technology, 2020, 22(4): 45403-045403. DOI: 10.1088/2058-6272/ab5b17
Citation: Zhihang ZHAO (赵志航), Xinlao WEI (魏新劳), Shuang SONG (宋爽), Lin CUI (崔林), Longfei ZHANG (张龙飞). A two-dimensional air streamer discharge model based on the improved Helmholtz equation at low temperature and sub-atmospheric pressure[J]. Plasma Science and Technology, 2020, 22(4): 45403-045403. DOI: 10.1088/2058-6272/ab5b17

A two-dimensional air streamer discharge model based on the improved Helmholtz equation at low temperature and sub-atmospheric pressure

Funds: This work is supported by the No.703 Research Institute of CSIC (China Shipbuilding Industry Corporation) and Yunnan Electric Test&Research Institute Group CO., Ltd.
More Information
  • Received Date: October 01, 2019
  • Revised Date: November 11, 2019
  • Accepted Date: November 24, 2019
  • In this paper, an efficient boundary condition is applied to solve the photoionization rate, and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure. The results show that the new boundary condition improves the calculation accuracy, but the influence of photoionization on the streamer discharge process is not obvious. The discharge current in the development of streamer discharge is defined, and the corresponding expression of the positive and negative streamer discharge current is given. The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced. In the process of discharge, only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure, and the trend of the other parameters is basically the same as that described in the previous paper. The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure, which has certain significance for the development of aviation and high voltage engineering.
  • [1]
    Ireland P M 2009 J. Electrostat. 67 462
    [2]
    Kasten D G et al 2007 Partial discharges at sub-atmosphericpressures—Insulation evaluation procedures for aerospaceapplications Proc. of 2007 Electrical Insulation Conf. andElectrical Manufacturing Expo (Nashville, TN: IEEE) 2007(https://doi.org/10.1109/EEIC.2007.4562619)
    [3]
    Liu H et al 2015 High Volt. Eng. 42 578 (in Chinese)
    [4]
    Xin W, Mahmoudi R and Lents C E 2018 A study of partialdischarge in high voltage DC distribution systems for hybrid electric aircraft Proc. of 2018 AIAA/IEEE Electric AircraftTechnologies Symp. (Cincinnati, OH, USA: IEEE) 2018 (https://doi.org/10.2514/6.2018-5020)
    [5]
    Townsend S J 1900 Nature 62 340
    [6]
    Townsend J S 1915 Electricity in Gases (Oxford: Oxford University Press)
    [7]
    Rogowski W 1928 Arbeiten aus dem ElektrotechnischenInstitut der Technischen Hochschule Aachen (Berlin: Springer) (https://doi.org/10.1007/BF01659954)
    [8]
    Raether H 1941 Z. Physik 117 375
    [9]
    Raether H 1941 Z. Physik 117 524
    [10]
    Loeb L B and Meek J M 1940 J. Appl. Phys. 11 438
    [11]
    Loeb L B and Meek J M 1940 J. Appl. Phys. 11 459
    [12]
    Ivanov S N et al 2010 J. Phys. D Appl. Phys. 43 315204
    [13]
    Yatom S et al 2016 Plasma Sources Sci. Technol. 25 064001
    [14]
    Briels T M P et al 2008 J. Phys. D Appl. Phys. 41 234004
    [15]
    Zhelezniak M B, Mnatsakanian A K and Sizykh S V 1982 Teplofiz. Vys. Temp. 20 357
    [16]
    Kulikovsky A A 2000 J. Phys. D Appl. Phys. 33 1514
    [17]
    Bourdon A et al 2007 Plasma Sources Sci. Technol. 16 656
    [18]
    Husain E and Nema R S 1982 IEEE Trans. Electr. Insul. 4 350
    [19]
    Liu L P and Becerra M 2017 IEEE Trans. Plasma Sci. 4 594
    [20]
    Davies A J, Evans C J and Jones F L 1964 Proc. Roy. Soc. AMath. Phys. Eng. Sci. 281 164
    [21]
    Liu N Y and Pasko V P 2004 J. Geophys. Res. 109 A04301
    [22]
    Naidis G V 2006 Plasma Sources Sci. Technol. 15 253
    [23]
    Luque A et al 2007 Appl. Phys. Lett. 90 081501
    [24]
    Ségur P et al 2006 Plasma Sources Sci. Technol. 15 648
    [25]
    Taine J and Soufiani A 1999 Adv. Heat Transf. 33 295
    [26]
    Cai X J et al 2015 Proc. CSEE 35 240 (in Chinese)
    [27]
    Dong M L 2012 Numerical simulation and experimentalresearch of DC corona streamer in centimeter-level air gapPhD Thesis Huazhong University of Science andTechnology, Wuhan, China (in Chinese)
    [28]
    Zhang Y et al 2008 Proc. CSEE 28 6 (in Chinese)
    [29]
    Dhali S K and Williams P F 1987 J. Appl. Phys. 62 4696
  • Related Articles

    [1]Bo ZHU, Ximu HAN, He SU, Xiangjie MA, Guoyan WU. Study on discharge characteristics of low-temperature sub-atmospheric pressure under steep change rate voltage[J]. Plasma Science and Technology, 2025, 27(1): 015401. DOI: 10.1088/2058-6272/ad85bc
    [2]Zhihang ZHAO (赵志航), Xinlao WEI (魏新劳), Shuang SONG (宋爽), Lin CUI (崔林), Kailun YANG (杨凯伦), Zhonghua ZHANG (张中华). A two-dimensional air streamer discharge modified model based on artificial stability term under non-uniform electric field at low temperature and sub-atmospheric pressure[J]. Plasma Science and Technology, 2021, 23(7): 75403-075403. DOI: 10.1088/2058-6272/abfd89
    [3]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [4]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [5]Yaqi YANG (杨亚奇), Weiguo LI (李卫国), Yu XIA (夏喻), Chuangye YUAN (袁创业). Characteristics of long-gap AC streamer discharges under low pressure conditions[J]. Plasma Science and Technology, 2017, 19(10): 105401. DOI: 10.1088/2058-6272/aa79fe
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [8]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [9]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [10]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08

Catalog

    Article views (106) PDF downloads (92) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return