Advanced Search+
Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec
Citation: Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec

A voltage support control strategy based on three-port flexible multi-state switch in distribution networks

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFB0903100) and Science and Technology Projects of State Grid Corporation of China (No. 521104170043).
More Information
  • Received Date: December 22, 2019
  • Revised Date: March 23, 2020
  • Accepted Date: March 25, 2020
  • Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures. As a novel type of power electronic equipment, a flexible multi-state switch (FMSS) is capable to support the voltage during the grid faults. In this paper, a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS. The positive–negative-sequence compensation (PNSC) scheme is adopted to control the active and reactive current. This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports. Based on the characteristics of the voltage support under PNSC scheme, two voltage support strategies are proposed. A proportional-integral controller is introduced to provide the reactive power references, which eliminates the errors when estimating the grid voltage and impedance. A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references. The voltage support strategies in two different voltage sags are simulated, and results show the feasibility and effectiveness of the proposed control strategies.
  • [1]
    Kuehn I et al 2018 IEEE Trans. Plasma Sci. 46 2647
    [2]
    Gassmann T et al 2011 Fusion Eng. Des. 86 884
    [3]
    Roshal A et al 2011 Fusion Eng. Des. 86 1450
    [4]
    Fu P 2014 Power Electron. 48 1 (in Chinese)
    [5]
    Song I et al 2013 IEEE Trans. Smart Grid 4 367
    [6]
    Wang C et al 2016 Autom. Electric Power Syst. 40 168 (in Chinese)
    [7]
    Keane A et al 2013 IEEE Trans. Power Syst. 28 1493
    [8]
    Bloemink J M and Green T C 2013 IEEE Trans. Power Deliv.28 911
    [9]
    Zhang G et al 2019 Renew. Sustain. Energy 11 025501
    [10]
    Peng B and Zhang G 2019 J. Eng. 2019 1005
    [11]
    Cao W et al 2016 Appl. Energy 164 245
    [12]
    Wang C et al 2016 Energy Proc. 103 70
    [13]
    Wang C et al 2017 Appl. Energy 189 301
    [14]
    Zhao J et al 2016 High Volt. Eng. 42 2134 (in Chinese)
    [15]
    Wang C et al 2018 Autom. Electric Power Syst. 42 13 (in Chinese)
    [16]
    Wang C et al 2015 Autom. Electric Power Syst. 39 85 (in Chinese)
    [17]
    Cao W et al 2016 Appl. Energy 165 36
    [18]
    Cong M et al 2015 IEEE Trans. Sustain. Energy 6 1131
    [19]
    Blaabjerg F et al 2006 IEEE Trans. Ind. Electron. 53 1398
    [20]
    Kabir M N et al 2014 Appl. Energy 134 290
    [21]
    Camacho A et al 2013 IEEE Trans. Ind. Electron. 60 1429
    [22]
    Castilla M et al 2014 IEEE Trans. Ind. Electron. 61 808
    [23]
    Camacho A et al 2018 IEEE Trans. Power Electron. 33 5362
    [24]
    Ji H et al 2017 Appl. Energy 208 986
    [25]
    Miret J et al 2013 IEEE Trans Power Electron. 28 5252
    [26]
    Rodriguez P et al 2007 IEEE Trans. Ind. Electron. 54 2583
    [27]
    Qi H et al 2014 Trans. China Electrotech. Soc. 29 416 (in Chinese)
    [28]
    Kim K et al 2012 IEEE Trans. Power Electron. 27 2376
  • Related Articles

    [1]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [2]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [3]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [4]YU Minghao(喻明浩), Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnel[J]. Plasma Science and Technology, 2014, 16(10): 930-940. DOI: 10.1088/1009-0630/16/10/06
    [5]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [6]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [7]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [8]I. M. ULANOV, M. V. ISUPOV, A. Yu LITVINSEV, P. A. MISCHENKO. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge[J]. Plasma Science and Technology, 2013, 15(4): 386-390. DOI: 10.1088/1009-0630/15/4/14
    [9]CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05
    [10]D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.

Catalog

    Article views (82) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return