Citation: | Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec |
[1] |
Kuehn I et al 2018 IEEE Trans. Plasma Sci. 46 2647
|
[2] |
Gassmann T et al 2011 Fusion Eng. Des. 86 884
|
[3] |
Roshal A et al 2011 Fusion Eng. Des. 86 1450
|
[4] |
Fu P 2014 Power Electron. 48 1 (in Chinese)
|
[5] |
Song I et al 2013 IEEE Trans. Smart Grid 4 367
|
[6] |
Wang C et al 2016 Autom. Electric Power Syst. 40 168 (in Chinese)
|
[7] |
Keane A et al 2013 IEEE Trans. Power Syst. 28 1493
|
[8] |
Bloemink J M and Green T C 2013 IEEE Trans. Power Deliv.28 911
|
[9] |
Zhang G et al 2019 Renew. Sustain. Energy 11 025501
|
[10] |
Peng B and Zhang G 2019 J. Eng. 2019 1005
|
[11] |
Cao W et al 2016 Appl. Energy 164 245
|
[12] |
Wang C et al 2016 Energy Proc. 103 70
|
[13] |
Wang C et al 2017 Appl. Energy 189 301
|
[14] |
Zhao J et al 2016 High Volt. Eng. 42 2134 (in Chinese)
|
[15] |
Wang C et al 2018 Autom. Electric Power Syst. 42 13 (in Chinese)
|
[16] |
Wang C et al 2015 Autom. Electric Power Syst. 39 85 (in Chinese)
|
[17] |
Cao W et al 2016 Appl. Energy 165 36
|
[18] |
Cong M et al 2015 IEEE Trans. Sustain. Energy 6 1131
|
[19] |
Blaabjerg F et al 2006 IEEE Trans. Ind. Electron. 53 1398
|
[20] |
Kabir M N et al 2014 Appl. Energy 134 290
|
[21] |
Camacho A et al 2013 IEEE Trans. Ind. Electron. 60 1429
|
[22] |
Castilla M et al 2014 IEEE Trans. Ind. Electron. 61 808
|
[23] |
Camacho A et al 2018 IEEE Trans. Power Electron. 33 5362
|
[24] |
Ji H et al 2017 Appl. Energy 208 986
|
[25] |
Miret J et al 2013 IEEE Trans Power Electron. 28 5252
|
[26] |
Rodriguez P et al 2007 IEEE Trans. Ind. Electron. 54 2583
|
[27] |
Qi H et al 2014 Trans. China Electrotech. Soc. 29 416 (in Chinese)
|
[28] |
Kim K et al 2012 IEEE Trans. Power Electron. 27 2376
|
[1] | Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035 |
[2] | Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79 |
[3] | Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1 |
[4] | YU Minghao(喻明浩), Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnel[J]. Plasma Science and Technology, 2014, 16(10): 930-940. DOI: 10.1088/1009-0630/16/10/06 |
[5] | ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09 |
[6] | LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17 |
[7] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[8] | I. M. ULANOV, M. V. ISUPOV, A. Yu LITVINSEV, P. A. MISCHENKO. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge[J]. Plasma Science and Technology, 2013, 15(4): 386-390. DOI: 10.1088/1009-0630/15/4/14 |
[9] | CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05 |
[10] | D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229. |