Citation: | Xutai CUI (崔旭泰), Qianqian WANG (王茜蒨), Kai WEI (魏凯), Geer TENG (腾格尔), Xiangjun XU (徐向君). Laser-induced breakdown spectroscopy for the classification of wood materials using machine learning methods combined with feature selection[J]. Plasma Science and Technology, 2021, 23(5): 55505-055505. DOI: 10.1088/2058-6272/abf1ac |
[1] |
Francisco-Fernández M et al 2012 Chemometr. Intell. Lab.Syst. 118 159
|
[2] |
Liebmann M J et al 2016 Proc. Natl. Acad. Sci. USA 113 E696
|
[3] |
Austerlitz F et al 2000 Genetics 154 1309
|
[4] |
Han H et al 2017 Bot. Sci. 95 283
|
[5] |
Khalid M et al 2008 Int. J. Simul. Syst. Sci. Technol. 9 9
|
[6] |
Zhang M M et al 2019 IAWA J. 40 58
|
[7] |
Cody R B et al 2012 J. Anal. Appl. Pyrol. 95 134
|
[8] |
Kalaw J M and Sevilla F B III 2018 Holzforschung 72 215
|
[9] |
Francisco-Fernández M et al 2015 J. Therm. Anal. Calorim.120 541
|
[10] |
Piuri V and Scotti F 2010 IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40 358
|
[11] |
Shou G Z et al 2014 J. Near Infrared Spectrosc. 22 423
|
[12] |
Park S Y et al 2017 J. Korean Wood Sci. Technol. 45 202
|
[13] |
Kurata Y 2017 For. Prod. J. 67 63
|
[14] |
Lavine B K et al 2001 Appl. Spectrosc. 55 960
|
[15] |
Solo-Gabriele H M et al 2004 Waste Manag. 24 413
|
[16] |
Blassino M, Solo-Gabriele H and Townsend T 2002 Waste Manag. Res. 20 290
|
[17] |
Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
|
[18] |
Singh J et al 2017 Food Chem. 221 1778
|
[19] |
Unnikrishnan V K et al 2013 Anal. Methods 5 1294
|
[20] |
Tognoni E et al 2002 Spectrochim. Acta Part B At. Spectrosc.57 1115
|
[21] |
Lanza N L et al 2012 Appl. Opt. 51 B74
|
[22] |
Leandro J G R, Gonzaga E B and de Figueiredo Latorraca J V 2019 Wood Sci. Technol. 53 1079
|
[23] |
Cui X T et al 2019 Appl. Phys. B 125 56
|
[24] |
Junjuri R et al 2019 Polym. Test. 76 101
|
[25] |
Tang Y et al 2018 Optik 165 179
|
[26] |
Duan F J et al 2018 Spectrochim. Acta Part B At. Spectrosc.143 12
|
[27] |
Wang Y et al 2016 Spectrochim. Acta Part B 126 44
|
[28] |
Fu X et al 2017 J. Anal. At. Spectrom. 32 1166
|
[29] |
Myakalwar A K et al 2015 Sci. Rep. 5 13169
|
[30] |
Wang Q Q et al 2018 Biomed. Opt. Express 9 5837
|
[31] |
Song W R et al 2021 J. Anal. At. Spectrom. 36 111
|
[32] |
Abdelli-Messaci S et al 2005 Spectrochim. Acta Part B At.Spectrosc. 60 955
|
[33] |
Liu K et al 2019 Anal. Methods 11 4769
|
[34] |
Wang Q Q et al 2020 Opt. Laser Technol. 125 106035
|
[35] |
Vítková G et al 2012 Spectrochim. Acta Part B At. Spectrosc.73 1
|
[1] | Jie LONG, Weiran SONG, Zongyu HOU, Zhe WANG. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2023, 25(7): 075501. DOI: 10.1088/2058-6272/acb6dd |
[2] | Guodong WANG (王国栋), Lanxiang SUN (孙兰香), Wei WANG (汪为), Tong CHEN (陈彤), Meiting GUO (郭美亭), Peng ZHANG (张鹏). A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74002-074002. DOI: 10.1088/2058-6272/ab76b4 |
[3] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[4] | Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf |
[5] | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[6] | Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d |
[7] | Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501 |
[8] | HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11 |
[9] | WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11 |
[10] | ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11 |
1. | Betlej, I., Skrzeczanowski, W., Nasiłowska, B. et al. Application of Laser-Induced Breakdown Spectroscopy (LIBS) as an Attempt to Determine Graphene Oxide Incorporation on Wood Surfaces. Coatings, 2025, 15(1): 34. DOI:10.3390/coatings15010034 |
2. | Lyu, Y., Song, W., Hou, Z. et al. Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy. Plasma Science and Technology, 2024, 26(7): 075509. DOI:10.1088/2058-6272/ad370c |
3. | Xu, X., Teng, G., Wang, Q. et al. Accuracy Enhancement of Glioma Boundary Tissue Identification by Polarization-resolved LIBS Spectral Fusion. Atomic Spectroscopy, 2024, 45(3): 216-225. DOI:10.46770/AS.2024.101 |
4. | Ali, Z., Jamil, Y., Anwar, H. et al. Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy. Waste Management and Research, 2024. DOI:10.1177/0734242X241248730 |
5. | Sarafis, A., Gerodimos, T., Kechaoglou, E. et al. Identification of wood specimens utilizing fs-LIBS and machine learning techniques. EPJ Applied Physics, 2024. DOI:10.1051/epjap/2024230215 |
6. | Huang, Y., Bais, A., Hussein, A.E. Domain Adaptation Using Class-Balanced Self-Paced Learning for Soil Classification with LIBS. IEEE Transactions on Plasma Science, 2023, 51(9): 2742-2755. DOI:10.1109/TPS.2023.3305559 |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 |
8. | Jiang, H., Ji, X., Yang, Y. et al. Vibration Signal Analysis of Roadheader Based on Referential Manifold Learning. Shock and Vibration, 2023. DOI:10.1155/2023/8818380 |
9. | He, Y., Zhang, Y., Ke, C. et al. Optical Scanning Analysis of Static Samples by Compact Laser Induced Breakdown Spectroscopy. IEEE Transactions on Instrumentation and Measurement, 2023. DOI:10.1109/TIM.2023.3300425 |
10. | Xu, X., Teng, G., Wang, Q. et al. Spectral preprocessing combined with feature selection improve model robustness for plastics samples classification by LIBS. Frontiers in Environmental Science, 2023. DOI:10.3389/fenvs.2023.1175392 |
11. | He, J., Sun, Y., Yu, C. et al. An Improved Wood Recognition Method Based on the One-Class Algorithm. Forests, 2022, 13(9): 1350. DOI:10.3390/f13091350 |
12. | He, Y., Xu, T., Zhang, Y. et al. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy. Plasma Science and Technology, 2022, 24(4): 045506. DOI:10.1088/2058-6272/ac45e4 |
13. | Pratondo, A., Novianty, A. Comparison of Wood Classification using Machine Learning. 2022. DOI:10.1109/ICSPC55597.2022.10001776 |
14. | Liu, Z., Hao, J., Yang, D. et al. A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification. Computational Intelligence and Neuroscience, 2022. DOI:10.1155/2022/4795535 |
15. | Ji, X., Yang, Y., Qu, Y. et al. Health Diagnosis of Roadheader Based on Reference Manifold Learning and Improved K -Means. Shock and Vibration, 2021. DOI:10.1155/2021/6311795 |