Advanced Search+
Ding WU (吴鼎), George C-Y CHAN, Xianglei MAO (毛向雷), Yu LI (李裕), Richard E RUSSO, Hongbin DING (丁洪斌), Vassilia ZORBA. Temporal and spatial study of differently charged ions emitted by ns-laser-produced tungsten plasmas using time-of-flight mass spectroscopy[J]. Plasma Science and Technology, 2021, 23(9): 95505-095505. DOI: 10.1088/2058-6272/ac08e1
Citation: Ding WU (吴鼎), George C-Y CHAN, Xianglei MAO (毛向雷), Yu LI (李裕), Richard E RUSSO, Hongbin DING (丁洪斌), Vassilia ZORBA. Temporal and spatial study of differently charged ions emitted by ns-laser-produced tungsten plasmas using time-of-flight mass spectroscopy[J]. Plasma Science and Technology, 2021, 23(9): 95505-095505. DOI: 10.1088/2058-6272/ac08e1

Temporal and spatial study of differently charged ions emitted by ns-laser-produced tungsten plasmas using time-of-flight mass spectroscopy

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFE0301304), National Natural Science Foundation of China (No. 12005034), and the China Postdoctoral Science Foundation (No. 2019M661087). This research was also supported by the US Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development, under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory.
More Information
  • Received Date: February 17, 2021
  • Revised Date: June 04, 2021
  • Accepted Date: June 06, 2021
  • Tungsten (W) is an important material in tokamak walls and divertors. The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy. In this work, we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy. Ions with different charge states from 1 to 7 (W+ to W7+) are all observed. The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities, indicating that space separation occurs between the differently charged ion groups. Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon. The temporal profile can be accurately fitted by a shifted Maxwell–Boltzmann distribution, and the velocities of the differently charged ions are also obtained from the fittings. It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface, which indicates that the acceleration process lasts through the period of plasma expansion. The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma, which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.
  • [1]
    Bogaerts A and Chen Z Y 2004 J. Anal. At. Spectrom. 19 1169
    [2]
    Bogaerts A and Chen Z Y 2005 Spectrochim. Acta Part B: At.Spectrosc. 60 1280
    [3]
    Mościcki T, Hoffman J and Szymański Z 2011 Arch. Mech.63 99
    [4]
    Autrique D et al 2013 Appl. Phys. Lett. 103 174102
    [5]
    Shabanov S V and Gornushkin I B 2014 Spectrochim. Acta B:At. Spectrosc. 100 147
    [6]
    Ursu C et al 2018 Complexity 2018 1814082
    [7]
    Irimiciuc S A et al 2017 J. Appl. Phys. 121 083301
    [8]
    Zhang Y et al 2017 AIP Adv. 7 075010
    [9]
    Irimiciuc Ş A, Mihăilă I and Agop M 2014 Phys. Plasmas 21 093509
    [10]
    Torrisi L 2018 Opt. Laser Technol. 99 7
    [11]
    Nica P E et al 2017 Experimental and theoretical studies on the dynamics of transient plasmas generated by laser ablation in various temporal regimes Laser Ablation-From Fundamentals to Applications (Canberra: IntechOpen)
    [12]
    Porneala C and Willis D A 2006 Appl. Phys. Lett. 89 211121
    [13]
    Dogar A H et al 2017 J. Phys. D: Appl. Phys. 50 385602
    [14]
    Comet M et al 2016 J. Appl. Phys. 119 013301
    [15]
    Ilyas B et al 2012 Laser Part. Beams 30 651
    [16]
    Elsied A M et al 2016 J. Appl. Phys. 120 173104
    [17]
    Burdt R A et al 2010 Appl. Phys. Lett. 97 041502
    [18]
    Ilyas B, Dogar A H and Qayyum A 2013 Nucl. Instrum. Meth.B-Beam Interact. Mater. At. 312 122
    [19]
    Irimiciuc S A et al 2017 Appl. Surf. Sci. 417 108
    [20]
    Pira P et al 2014 J. Phys. D: Appl. Phys. 47 405205
    [21]
    Focsa C et al 2017 Appl. Surf. Sci. 424 299
    [22]
    Li C et al 2015 J. Nucl. Mater. 463 915
    [23]
    Hu Z et al 2017 Phys. Scr. 2017 014046
    [24]
    Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501
    [25]
    Li C et al 2016 Front. Phys. 11 114214
    [26]
    Hu Z H et al 2018 Fusion Eng. Des. 135 95
    [27]
    Philipps V et al 2013 Nucl. Fusion 53 093002
    [28]
    Yao D M et al 2015 Fusion Eng. Des. 98–99 1692
    [29]
    Brooks J N et al 2015 Nucl. Fusion 55 043002
    [30]
    Wu D et al 2017 Spectrochim. Acta Part B: At. Spectrosc.137 70
    [31]
    Suen T W 2012 A mass spectrometry study of isotope separation in the laser plume PhD Thesis University of California, Berkeley, USA
    [32]
    Wu D et al 2020 J. Anal. At. Spectrom. 35 767
    [33]
    Singh J P and Thakur S N 2007 Laser-Induced Breakdown Spectroscopy (Amsterdam: Elsevier)
    [34]
    Torrisi L 2016 Radiat. Eff. Defect. Solids 171 34
    [35]
    Wang X H et al 2014 Spectrochim. Acta Part B: At. Spectrosc.99 101
    [36]
    Krása J et al 2005 Plasma Phys. Control. Fusion 47 1339
    [37]
    Kumar A et al 2008 J. Appl. Phys. 104 093302
    [38]
    Wu D et al 2019 Phys. Plasmas 26 013303
  • Related Articles

    [1]Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [4]Tianheng XU (徐天衡), Gang XIONG (熊刚), Jun XIAO (肖君), Yang YANG (杨洋), Roger HUTTON, Yaming ZOU (邹亚明), Ke YAO (姚科). K-shell excitation dielectronic recombination resonance strengths of highly charged He-like to O-like Xe ions[J]. Plasma Science and Technology, 2018, 20(7): 74010-074010. DOI: 10.1088/2058-6272/aac573
    [5]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [6]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8
    [7]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4
    [8]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [9]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [10]WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07
  • Cited by

    Periodical cited type(6)

    1. Wu, J., Zhou, Y., Chen, M. et al. Numerical modeling and simulation on nanosecond laser-target interactions. Journal of Physics D: Applied Physics, 2025, 58(14): 143004. DOI:10.1088/1361-6463/adb58f
    2. Andrei Irimiciuc, S., Chertopalov, S., Novotny, M. et al. Exploring Ion Dynamics in Laser-Produced Plasmas. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400139
    3. Liu, Z., Chen, M., Huang, H. et al. Investigation of thermodynamic properties in picosecond laser-produced plasmas on silicon. AIP Advances, 2023, 13(9): 095002. DOI:10.1063/5.0165693
    4. Boltnev, R.E., Karabulin, A.V., Krushinskaya, I.N. et al. Ionization of Helium Atoms by Triply Charged Metal Atoms during Laser Ablation of Metals in Superfluid Helium. High Energy Chemistry, 2023, 57(2): 168-173. DOI:10.1134/S0018143923020066
    5. Liu, J., Wu, D., Hu, X. et al. Study of spectral intensity of the laser ablated tungsten plasma and ablation mass at various laser spot sizes and laser fluence in vacuum environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2022.106569
    6. Fayyaz, A., Liaqat, U., Yaqoob, K. et al. Combination of laser-induced breakdown spectroscopy, and time–of–flight mass spectrometry for the quantification of CoCrFeNiMo high entropy alloys. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106562

    Other cited types(0)

Catalog

    Article views (112) PDF downloads (157) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return