Citation: | Hao ZHENG, Hua LIANG, Jie CHEN, Haohua ZONG, Xiangzhe MENG, Like XIE, Yinghong LI. Experimental study on plasma actuation characteristics of nanosecond pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2022, 24(1): 015505. DOI: 10.1088/2058-6272/ac35a3 |
Combining high-speed schlieren technology and infrared imaging technology, related research has been carried out on the influence of parameters such as actuation voltage, repetition frequency, and electrode size of an actuator on the discharge characteristics, induced flow field characteristics, and thermal characteristics of nanosecond pulsed dielectric barrier discharge. The results show that increasing the value of the actuation voltage can significantly increase the actuation intensity, and the plasma discharge area is significantly extended. Increasing the repetition frequency can increase the number of discharges per unit time. Both will cause more energy input and induce more changes in the flow field. The effect of temperature rise is more significant. The width of the covered electrode will affect the potential distribution during the discharge process, which in turn will affect the extension process of the plasma discharge filament. Under the same actuation intensity, the wider the covered electrode, the larger range the induced flow field and temperature rise is. Preliminary experimental analyses of high-frequency actuation characteristics, temperature field characteristics, flow field characteristics and actuation parameter settings provide support for the parameter selection and partial mechanism analysis of plasma anti-icing.
This paper was supported by the National Key R & D Program of China (No. 2019YFA0405300) and National Natural Science Foundation of China (Nos. 51907205 and 12002363).
[1] |
Little J et al 2012 AIAA J. 50 350 doi: 10.2514/1.J051114
|
[2] |
Geng X et al 2018 Mod. Phys. Lett. B 32 1850108 doi: 10.1142/S0217984918501087
|
[3] |
Liu Y et al 2019 Int. J. Heat Mass Transfer 136 864 doi: 10.1016/j.ijheatmasstransfer.2019.03.068
|
[4] |
Cai J S et al 2017 Exp. Fluids 58 102 doi: 10.1007/s00348-017-2378-y
|
[5] |
Benard N and Moreau E 2014 Exp. Fluids 55 1846 doi: 10.1007/s00348-014-1846-x
|
[6] |
Kelley C L et al 2014 AIAA J. 52 1871 doi: 10.2514/1.J052708
|
[7] |
Zhang X et al 2019 Chin. J. Aeronaut. 32 1190 doi: 10.1016/j.cja.2019.03.010
|
[8] |
Durasiewicz C, Singh A and Little J C 2018 A comparative flow physics study of Ns-DBD versus Ac-DBD plasma actuators for transient separation control on a NACA 0012 airfoil Proc. of 2018 AIAA Aerospace Sciences Meeting (Kissimmee) (AIAA) p 1061
|
[9] |
Kolbakir C, Yang L, Hui H et al 2018 An Experimental investigation on the thermal effects of NS-DBD and AC-DBD Plasma actuators for aircraft icing mitigation Proc. of 2018 AIAA Aerospace Sciences Meeting (Kissimmee) (AIAA) (https://doi.org/10.2514/6.2018-0164)
|
[10] |
Li F et al 2017 IEEE Trans. Plasma Sci. 45 672 doi: 10.1109/TPS.2017.2678529
|
[11] |
Jiang H et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1101 doi: 10.1109/TDEI.2013.6571423
|
[12] |
Jiang H et al 2011 IEEE Trans. Plasma Sci. 39 2076 doi: 10.1109/TPS.2011.2146280
|
[13] |
Tao S et al 2008 J. Phys. D: Appl. Phys. 41 215203 doi: 10.1088/0022-3727/41/21/215203
|
[14] |
Shao T et al 2012 Vacuum 86 876 doi: 10.1016/j.vacuum.2011.03.022
|
[15] |
Zhou Y et al 2014 High Volt. Eng. 40 3091 (in Chinese) doi: 10.13336/j.1003-6520.hve.2014.10.021
|
[16] |
Ndong A C A et al 2013 J. Electrostat. 71 246 doi: 10.1016/j.elstat.2012.11.030
|
[17] |
Takashima K et al 2011 Plasma Sources Sci. Technol. 20 055009 doi: 10.1088/0963-0252/20/5/055009
|
[18] |
Zhao Z J et al 2014 Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators Proc. of the 52nd Aerospace Sciences Meeting (National Harbor) (AIAA) (https://doi.org/10.2514/6.2014-0402)
|
[19] |
Zheng J G et al 2016 Commun. Comput. Phys. 20 1424 doi: 10.4208/cicp.090615.140316a
|
[20] |
Van Den B J 2016 De-icing using ns-DBD Plasma Actuators Delft University of Technology MS Thesis
|
[21] |
Unfer T and Boeuf J P 2009 J. Phys. D: Appl. Phys. 42 194017 doi: 10.1088/0022-3727/42/19/194017
|
[22] |
Zhu Y F et al 2013 J. Phys. D: Appl. Phys. 46 355205 doi: 10.1088/0022-3727/46/35/355205
|
[23] |
Wu Y et al 2015 Plasma Process. Polym. 12 642 doi: 10.1002/ppap.201400175
|
[24] |
Popov N A 2011 J. Phys. D: Appl. Phys. 44 285201 doi: 10.1088/0022-3727/44/28/285201
|
[25] |
Chen J et al 2018 Appl. Sci. 8 1889 doi: 10.3390/app8101889
|
[26] |
Liu Y et al 2019 Plasma Sources Sci. Technol. 28 014001 doi: 10.1088/1361-6595/aaedf8
|
[27] |
Zhao G Y et al 2016 Int. J. Mech. Res. 5 75 (in Chinese) doi: 10.12677/IJM.2016.52008
|
[1] | Nanxuan SHEN, Zihan SU, Yuanhang ZHANG, Tiebing LU. The influence of charge characteristics of suspension droplets on the ion flow field in different temperatures and humidity[J]. Plasma Science and Technology, 2022, 24(4): 044004. DOI: 10.1088/2058-6272/ac5afb |
[2] | Victor TARASENKO, Dmitry BELOPLOTOV, Mikhail LOMAEV, Dmitry SOROKIN. E-beam generation in discharges initiated by voltage pulses with a rise time of 200 ns at an air pressure of 12.5–100 kPa[J]. Plasma Science and Technology, 2019, 21(4): 44007-044007. |
[3] | Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e |
[4] | Yunxiao ZHANG (张云霄), Yuanxiang ZHOU (周远翔), Ling ZHANG (张灵), Zhen LIN (林臻), Jie LIU (刘杰), Zhongliu ZHOU (周仲柳). Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature[J]. Plasma Science and Technology, 2018, 20(5): 54012-054012. DOI: 10.1088/2058-6272/aaa88a |
[5] | Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95 |
[6] | Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc |
[7] | Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154 |
[8] | WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19 |
[9] | Sohrab Gholamhosein POURYOUSSEFI, Masoud MIRZAEI. Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators[J]. Plasma Science and Technology, 2015, 17(5): 415-424. DOI: 10.1088/1009-0630/17/5/09 |
[10] | CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05 |
1. | Guo, Z., Fang, H., Honary, F. The generation of ulf/elf/vlf waves in the ionosphere by modulated heating. Universe, 2021, 7(2): 29. DOI:10.3390/universe7020029 |