Citation: | Aigerim TAZHEN, Merlan DOSBOLAYEV, Tlekkabul RAMAZANOV. Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow[J]. Plasma Science and Technology, 2022, 24(5): 055403. DOI: 10.1088/2058-6272/ac5018 |
Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived (~300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and low-inductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil, magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament's azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and I–V characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents.
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (IRN AP08053373).
[1] |
Flanagan J C et al 2015 Plasma Phys. Control. Fusion 57 014037 doi: 10.1088/0741-3335/57/1/014037
|
[2] |
Dosbolayev M K et al 2017 Laser Part. Beams 35 741 doi: 10.1017/S0263034617000805
|
[3] |
Dosbolayev M et al 2019 IEEE Trans. Plasma Sci. 47 3047 doi: 10.1109/TPS.2019.2919096
|
[4] |
Klimov N S et al 2011 Phys. Scr. 145 014064 doi: 10.1088/0031-8949/2011/T145/014064
|
[5] |
Zhukeshov A M et al 2013 Am. J. Phys. Appl. 1 5
|
[6] |
Ellsworth J L et al 2014 Rev. Sci. Instrum. 85 013504 doi: 10.1063/1.4859495
|
[7] |
Jafari H, Habibi M and Eta'ati G R 2017 Phys. Lett. A 381 2813 doi: 10.1016/j.physleta.2017.06.043
|
[8] |
Hongsheng G et al 2004 Nucl. Phys. Rev. 21 214
|
[9] |
Zhang Y et al 2019 Phys. Rev. Lett. 122 135001 doi: 10.1103/PhysRevLett.122.135001
|
[10] |
Coenen J W 2015 J. Nucl. Mater. 463 78 doi: 10.1016/j.jnucmat.2014.08.062
|
[11] |
Garkusha I E 2013 J. Kharkiv Natl. Univ. Phys. Ser. : Nuclei, Part., Fields 1040 28
|
[12] |
Solyakov D G 2015 Problems At. Sci. Technol. Series: Plasma Phys. 21 104
|
[13] |
Dosbolayev M K et al 2016 News Nat. Acad. Sci. Repub. Kazakhstan 6 48
|
[14] |
Utegenov A U et al 2018 Recent Contrib. Phys. 67 34
|
[15] |
Tazhen A B et al 2020 Plasma Phys. Rep. 46 465 doi: 10.1134/S1063780X20040121
|
[16] |
Piriaei D et al 2017 Phys. Plasmas 24 043504 doi: 10.1063/1.4979275
|
[17] |
Instruments Editorial Office et al 2018 Instruments 2 1 doi: 10.3390/instruments2010001
|
[18] |
Damideh V et al 2017 Phys. Plasmas 24 063302 doi: 10.1063/1.4985309
|
[19] |
Hsu S C et al 2018 IEEE Trans. Plasma Sci. 46 1951 doi: 10.1109/TPS.2017.2779421
|
[20] |
Mahtab M et al 2014 J. Exp. Phys. 2014 307403 doi: 10.1155/2014/307403
|
[21] |
Zhukeshov A M et al 2012 Int. J. Math. Phys. 3 50
|
[22] |
Khan M Z et al 2014 Sci. World J. 2014 240729
|
[23] |
Habibi M 2016 Phys. Lett. A 380 439 doi: 10.1016/j.physleta.2015.10.048
|
[24] |
Bhuyan H et al 2003 Meas. Sci. Technol. 14 1769 doi: 10.1088/0957-0233/14/10/305
|
[25] |
Merlino R L 2007 Am. J. Phys. 75 1078 doi: 10.1119/1.2772282
|
[26] |
Lim L K, Yap S L and Bradley D A 2018 PLoS ONE 13 e0188009 doi: 10.1371/journal.pone.0188009
|
[1] | Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601 |
[2] | Xinlei ZHU (朱鑫磊), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Jin WANG (王晋), Zhen LIU (刘振), Keping YAN (闫克平). The effect of the configuration of a single electrode corona discharge on its acoustic characteristics[J]. Plasma Science and Technology, 2017, 19(7): 75403-075403. DOI: 10.1088/2058-6272/aa6716 |
[3] | LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06 |
[4] | QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07 |
[5] | WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06 |
[6] | REN Jingyu (任景俞), WANG Tiecheng (王铁成), QU Guangzhou (屈广周), LIANG Dongli (梁东丽), HU Shibin (呼世斌). Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment[J]. Plasma Science and Technology, 2015, 17(12): 1053-1060. DOI: 10.1088/1009-0630/17/12/13 |
[7] | WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07 |
[8] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[9] | A. A. AZOOZ, M. A. AHMAD. The Effect of the Earthed Electrode Size on the Ignition Voltage of Low-Pressure RF Capacitive Discharge in Argon[J]. Plasma Science and Technology, 2013, 15(9): 881-884. DOI: 10.1088/1009-0630/15/9/09 |
[10] | LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08 |