Advanced Search+
Long MIAO, Mingqing NIE, Yuri Mihailovich GRISHIN, Xiaoyu WANG, Zhengxi ZHU, Jiahui SONG, Fuwen LIANG, Zihao HE, Feng TIAN, Ningfei WANG. Influence of vacuoles with gas–liquid inclusions on the thermobaric destruction conditions of natural quartz under dynamic heating in an RF-TICP torch system[J]. Plasma Science and Technology, 2023, 25(4): 045503. DOI: 10.1088/2058-6272/aca009
Citation: Long MIAO, Mingqing NIE, Yuri Mihailovich GRISHIN, Xiaoyu WANG, Zhengxi ZHU, Jiahui SONG, Fuwen LIANG, Zihao HE, Feng TIAN, Ningfei WANG. Influence of vacuoles with gas–liquid inclusions on the thermobaric destruction conditions of natural quartz under dynamic heating in an RF-TICP torch system[J]. Plasma Science and Technology, 2023, 25(4): 045503. DOI: 10.1088/2058-6272/aca009

Influence of vacuoles with gas–liquid inclusions on the thermobaric destruction conditions of natural quartz under dynamic heating in an RF-TICP torch system

More Information
  • Corresponding author:

    Long MIAO, E-mail: miaolong@bit.edu.cn

  • Received Date: August 02, 2022
  • Revised Date: October 31, 2022
  • Accepted Date: November 02, 2022
  • Available Online: December 05, 2023
  • Published Date: February 07, 2023
  • In the present work, the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency (RF) inductively coupled plasma torch was numerically studied. The thermobaric stress in the quartz particles under dynamic heating in a heterogeneous plasma flow was determined by a two-stage approximation approach. The effect of the presence of vacuoles in natural quartz on the particle thermobaric destruction conditions was studied. It was found that the equivalent thermal and baric stresses in quartz particles may significantly increase in the presence of vacuoles within a small gas volume fraction. The influence of the regime and energetic working conditions of an RF inductively coupled plasma torch system on the particle thermobaric destruction conditions was examined, and a recommendation was given to promote the degree of thermobaric destruction of quartz particles, which is of substantial importance for improving the overall enrichment efficiency of quartz concentrates.

  • This work was supported by National Natural Science Foundation of China (Nos. 52202460, 52177128), National Key R & D Program of China (Nos. 2020YFC2201100, 2021YFC2202804), China Postdoctoral Science Foundation (Nos. 2021M690392, 2021TQ0036), Science Foundation for Youth Scholars of the Beijing Institute of Technology, and Advanced Space Propulsion Laboratory of BICE and the Beijing Engineering Research Centre of Efficient and Green Aerospace Propulsion Technology (No. LabASP-2021-04).

  • [1]
    Vatalis K I, Charalambides G and Benetis N P 2015 Proc. Econ. Finance 24 734 doi: 10.1016/S2212-5671(15)00688-7
    [2]
    Churbanov M F 1995 J. Non-Cryst. Solids 184 25 doi: 10.1016/0022-3093(94)00688-1
    [3]
    Haus R, Prinz S and Priess C 2012 Assessment of high purity quartz resources Quartz: Deposits, Mineralogy and Analytics ed J Götze and R Möckel (Berlin: Springer)
    [4]
    Santos M F M et al 2015 Int. J. Miner. Process. 135 65 doi: 10.1016/j.minpro.2015.02.002
    [5]
    Platias S, Vatalis K I and Charalabidis G 2013 Proc Econ. Finance 5 597 doi: 10.1016/S2212-5671(13)00070-1
    [6]
    Tuncuk A and Akcil A 2016 Int. J. Miner. Process. 153 44 doi: 10.1016/j.minpro.2016.05.021
    [7]
    Borisov L A et al 2007 High Temp. 45 708 doi: 10.1134/S0018151X07050203
    [8]
    Grishin Y M et al 2019 Int. J. Miner. Metall. Mater. 26 267 doi: 10.1007/s12613-019-1734-8
    [9]
    Boulos M I 1992 J. Therm. Spray Technol. 1 33 doi: 10.1007/BF02657015
    [10]
    Roedder E 1984 Fluid inclusions ed H P Ribbe Reviews in Mineralogy (Washington, DC: Mineralogical Society of America)
    [11]
    Götze J 2009 Mineral. Mag. 73 645 doi: 10.1180/minmag.2009.073.4.645
    [12]
    Miao L and Grishin Y M 2020 Plasma Sci. Technol. 22 115505 doi: 10.1088/2058-6272/abad1a
    [13]
    Varaksin A Y 2007 Turbulent Particle-Laden Gas Flows (Berlin: Springer)
    [14]
    Crowe C T, Sharma M P and Stock D E 1977 J. Fluids Eng. 99 325 doi: 10.1115/1.3448756
    [15]
    Proulx P, Mostaghimi J and Boulos M I 1985 Int. J. Heat Mass Transfer 28 1327 doi: 10.1016/0017-9310(85)90163-2
    [16]
    Colombo V et al 2013 Plasma Sources Sci. Technol. 22 035010 doi: 10.1088/0963-0252/22/3/035010
    [17]
    Gravelle D V et al 1989 J. Phys D: Appl. Phys. 22 1471 doi: 10.1088/0022-3727/22/10/009
    [18]
    Cressault Y et al 2010 J. Phys D: Appl. Phys. 43 335204 doi: 10.1088/0022-3727/43/33/335204
    [19]
    Bernardi D et al 2005 Pure Appl. Chem. 77 359 doi: 10.1351/pac200577020359
    [20]
    Colombo V et al 2012 Plasma Sources Sci. Technol. 21 045010 doi: 10.1088/0963-0252/21/4/045010
    [21]
    Launder B E and Spalding D B 1974 Comput. Methods Appl. Mech. Eng. 3 269 doi: 10.1016/0045-7825(74)90029-2
    [22]
    Boulos M I, Fauchais P and Pfender E 1994 Thermal Plasmas Fundamentals and Applications (New York: Plenum Press)
    [23]
    Nasyrov S and Popov S A 2012 Glass Ceram. 69 224 doi: 10.1007/s10717-012-9451-z
    [24]
    Landau L D and Lifshitz E M 1970 Theory of Elasticity 2nd edn (London: Pergamon)
    [25]
    Khoei A R 2005 Computational Plasticity in Powder Forming Processes(Amsterdam: Elsevier)
    [26]
    Robie R A, Hemingway B S and Fisher J R 1978 Thermodynamic Properties of Minerals and Related Substances at 298.15 k and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (Washington, DC: U.S. Geological Survey Bulletin)
    [27]
    Šesták J, Mareš J J and Hubík P 2010 Glassy, Amorphous and Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties (Berlin: Springer)
    [28]
    Yushkin N P 1971 Mechanical Properties of Minerals (Leningrad: Nauka)
    [29]
    Ochkov V et al 2016 Thermal Engineering Studies with Excel, Mathcad and Internet (Berlin: Springer)
    [30]
    Grishin Y M and Miao L 2020 High Temp. 58 1 doi: 10.1134/S0018151X20010071
  • Related Articles

    [1]L MIAO, Yu M GRISHIN. Dynamic heating and thermal destruction conditions of quartz particles in polydisperse plasma flow of RF-ICP torch system[J]. Plasma Science and Technology, 2020, 22(11): 115505. DOI: 10.1088/2058-6272/abad1a
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]Jian YANG (杨健), Ruiyang XU (许睿飏), Angjian WU (吴昂键), Xiaodong LI (李晓东), Li LI (李澧), Wangjun SHEN (沈望俊), Jianhua YAN (严建华). Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(12): 125503. DOI: 10.1088/2058-6272/aacda4
    [4]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [5]Chenfan YU (余晨帆), Xin ZHOU (周鑫), Dianzheng WANG (王殿政), Neuyen VAN LINH, Wei LIU (刘伟). Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders[J]. Plasma Science and Technology, 2018, 20(1): 14019-014019. DOI: 10.1088/2058-6272/aa8e94
    [6]WANG Songbai (王松柏), LEI Guangjiu (雷光玖), BI Zhenhua (毕振华), H. GHOMI, YANG Size (杨思泽), LIU Dongping (刘东平). Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator[J]. Plasma Science and Technology, 2016, 18(9): 907-911. DOI: 10.1088/1009-0630/18/9/06
    [7]Seon-Geun OH, Young-Jun LEE, Jae-Hong JEON, Jong-Hyeon SEO, Hee-Hwan CHOE. The Spatial Effects of Antenna Configuration in a Large Area Inductively Coupled Plasma System for Flat Panel Displays[J]. Plasma Science and Technology, 2014, 16(8): 758-766. DOI: 10.1088/1009-0630/16/8/06
    [8]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [9]ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10
    [10]D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.
  • Cited by

    Periodical cited type(5)

    1. Ye, B., Gao, G., Wang, S. et al. Research on grounding protection system of the central solenoid model coil of the CRAFT. Plasma Science and Technology, 2025, 27(4): 044010. DOI:10.1088/2058-6272/adbc34
    2. He, J., Wang, K., Li, J. Numerical analysis of the convective heat transfer coefficient enhancement of a pyro-breaker utilized in superconducting fusion facilities. Energies, 2021, 14(22): 7565. DOI:10.3390/en14227565
    3. He, J., Wang, K., Li, J. Application of an improved mayr-type arc model in pyro-breakers utilized in superconducting fusion facilities. Energies, 2021, 14(14): 4383. DOI:10.3390/en14144383
    4. He, J., Wang, K., Fu, P. et al. Numerical Analysis of a Pyro-breaker Utilized in Superconducting Fusion Facility. 2021. DOI:10.1109/CIEEC50170.2021.9510269
    5. He, J., Song, Z., Tang, C. et al. Designing of cooling water system for a pyro-breaker utilized in superconductive fusion facility. Fusion Engineering and Design, 2019. DOI:10.1016/j.fusengdes.2019.111294

    Other cited types(0)

Catalog

    Figures(8)  /  Tables(4)

    Article views (59) PDF downloads (42) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return