Citation: | Renchuan HE, Tianchao XU, Xiaoyi YANG, Chijie XIAO, Zuyu ZHANG, Ruixin YUAN, Xiaogang WANG, Zhibin GUO, Xiuming YU, Yue GE. Laboratory observation of electron energy distribution near three-dimensional magnetic nulls[J]. Plasma Science and Technology, 2024, 26(3): 034007. DOI: 10.1088/2058-6272/ad0d4b |
The acceleration of electrons near three-dimensional (3D) magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process. To explore electron acceleration in a 3D magnetic null topology, we constructed a pair of 3D magnetic nulls in the PKU Plasma Test (PPT) device and observed acceleration of electrons near magnetic nulls. This study measured the plasma floating potential and ion density profiles around the 3D magnetic null. The potential wells near nulls may be related to the energy variations of electrons, so we measured the electron distribution functions (EDFs) at different spatial positions. The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls. With scanning probes that can directionally measure and theoretically analyze based on curve fitting, the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology. The kinetic energy of electrons accelerated by the electric field is 6 eV (ve∼7vAlfvén−e) and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
[1] |
Yamada M, Kulsrud R and Ji H T 2010 Rev. Mod. Phys. 82 603 doi: 10.1103/RevModPhys.82.603
|
[2] |
Mancuso S, Barghini D and Telloni D 2020 Astron. Astrophys. 636 A96 doi: 10.1051/0004-6361/201936819
|
[3] |
Gosling J T 2012 Space Sci. Rev. 172 187 doi: 10.1007/s11214-011-9747-2
|
[4] |
Forbes T G 1991 Geophys. Astrophys. Fluid Dyn. 62 15 doi: 10.1080/03091929108229123
|
[5] |
Mozer F S, Bale S D and Phan T D 2002 Phys. Rev. Lett. 89 015002 doi: 10.1103/PhysRevLett.89.015002
|
[6] |
Wygant J R et al 2005 J. Geophys. Res.: Space Phys. 110 A09206
|
[7] |
Øieroset M et al 2002 Phys. Rev. Lett. 89 195001 doi: 10.1103/PhysRevLett.89.195001
|
[8] |
Zhang B and Yan H R 2011 Astrophys. J. 726 90 doi: 10.1088/0004-637X/726/2/90
|
[9] |
Sergeev V A et al 2021 J. Geophys. Res.: Space Phys. 126 e2020JA028694
|
[10] |
Retinò A et al 2006 Geophys. Res. Lett. 33 L06101
|
[11] |
Burch J L and Drake J F 2009 Am. Sci. 97 392 doi: 10.1511/2009.80.392
|
[12] |
Ping Y L et al 2023 Nat. Phys. 19 263
|
[13] |
Ren Y et al 2008 Phys. Rev. Lett. 101 085003 doi: 10.1103/PhysRevLett.101.085003
|
[14] |
Lawrence E E and Gekelman W 2009 Phys. Rev. Lett. 103 105002 doi: 10.1103/PhysRevLett.103.105002
|
[15] |
Bohlin H et al 2014 Rev. Sci. Instrum. 85 023501 doi: 10.1063/1.4861359
|
[16] |
Forest C B et al 2015 J. Plasma Phys. 81 345810501 doi: 10.1017/S0022377815000975
|
[17] |
Brown M R et al 2002 Phys. Plasmas 9 2077 doi: 10.1063/1.1458589
|
[18] |
Yamada M 1999 J. Geophys. Res.: Space Phys. 104 14529
|
[19] |
Yamada M et al 2006 Phys. Plasmas 13 052119 doi: 10.1063/1.2203950
|
[20] |
He R C et al 2022 Plasma Sci. Technol. 24 115001 doi: 10.1088/2058-6272/ac770b
|
[21] |
Xiao C J et al 2016 Rev. Sci. Instrum. 87 11D610 doi: 10.1063/1.4961282
|
[22] |
Xu T C et al 2020 Nucl. Fusion 60 016029 doi: 10.1088/1741-4326/ab53a2
|
[23] |
Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 269501
|
[24] |
Chen F F 2012 Plasma Sources Sci. Technol. 21 055013 doi: 10.1088/0963-0252/21/5/055013
|
[25] |
Trent K R, Gallimore A D and Foster J E 2019 Phys. Plasmas 26 063513 doi: 10.1063/1.5093892
|
[26] |
Kado S et al 2004 Contrib. Plasma Phys. 44 656 doi: 10.1002/ctpp.200410097
|
[27] |
Hoegy W R and Brace L H 1999 Rev. Sci. Instrum. 70 3015 doi: 10.1063/1.1149862
|
[28] |
He J S et al 2008 Geophys. Res. Lett. 35 L14104
|
[1] | Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1 |
[2] | Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3 |
[3] | Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf |
[4] | Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e |
[5] | Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1 |
[6] | Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade |
[7] | Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9 |
[8] | Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563 |
[9] | JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06 |
[10] | YANG Guang (杨光), QIAO Shujun (乔淑君), CHEN Pengfei (陈鹏飞), DING Yu (丁宇), TIAN Di (田地). Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library[J]. Plasma Science and Technology, 2015, 17(8): 656-663. DOI: 10.1088/1009-0630/17/8/08 |
1. | Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606 | |
2. | Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555 | |
3. | Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632 | |
4. | Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807 | |
5. | Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329 | |
6. | Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876 | |
7. | Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859 | |
8. | Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490 | |
9. | Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609 | |
10. | Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175 | |
11. | Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1 | |
12. | Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053 | |
13. | Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357 | |
14. | Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356 | |
15. | Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490 | |
16. | Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8 | |
17. | Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d | |
18. | Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda | |
19. | Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed | |
20. | Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188 | |
21. | Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393 | |
22. | Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6 | |
23. | Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297 | |
24. | Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761 | |
25. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |