Advanced Search+
Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56
Citation: Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56

Novel method for identifying the stages of discharge underwater based on impedance change characteristic

More Information
  • Author Bio:

    Zhongjian KANG: kangzjzh@163.com

  • Corresponding author:

    Zhongjian KANG, kangzjzh@163.com

  • Received Date: July 09, 2023
  • Revised Date: October 18, 2023
  • Accepted Date: October 23, 2023
  • Available Online: April 01, 2024
  • Published Date: April 03, 2024
  • It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter (STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate (K) and the moment (t). Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scr less than 1.761.

  • [1]
    Kozyrev A, Zherlitsyn A and Semeniuk N 2022 Plasma Sci. Technol. 24 035402 doi: 10.1088/2058-6272/ac3973
    [2]
    Cai Z C et al 2023 Plasma Sci. Technol. 25 125501 doi: 10.1088/2058-6272/acde34
    [3]
    Chen W et al 2012 J. Pet. Sci. Eng. 88‒89 67 doi: 10.1016/j.petrol.2012.01.009
    [4]
    Sun A B, Huo C and Zhuang J 2016 High Voltage 1 74 doi: 10.1049/hve.2016.0016
    [5]
    Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
    [6]
    Li Y et al 2021 High Voltage Eng. 47 753 (in Chinese)
    [7]
    Yu Y et al 2020 High Voltage Eng. 46 2951 (in Chinese)
    [8]
    Kang Z J et al 2022 Energy Rep. 8 12522 doi: 10.1016/j.egyr.2022.09.063
    [9]
    Nie Y L et al 2021 High Voltage Eng. 47 2607 (in Chinese)
    [10]
    Chapman N R 1985 J. Acoust. Soc. Am. 78 672 doi: 10.1121/1.392436
    [11]
    Peng J Y et al 2022 Theor. Appl. Fract. Mech. 118 103270 doi: 10.1016/j.tafmec.2022.103270
    [12]
    Oshita D et al 2014 IEEE Trans. Plasma Sci. 42 3209 doi: 10.1109/TPS.2014.2328096
    [13]
    Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
    [14]
    Li X D et al 2016 Phys. Plasmas 23 625
    [15]
    Liu Y et al 2021 High Voltage Eng. 47 2591 (in Chinese)
    [16]
    Jimenez F J et al 2021 J. Phys. D: Appl. Phys. 54 075202
    [17]
    Merciris T, Valensi F and Hamdan A 2020 IEEE Trans. Plasma Sci. 48 3193 doi: 10.1109/TPS.2020.3018052
    [18]
    Liu W J et al 2022 J. Electrochem. Energy Conver. Stor. 19 021005 doi: 10.1115/1.4051941
    [19]
    Ma S K et al 2016 Int. J. Electron. 103 217 doi: 10.1080/00207217.2015.1036317
    [20]
    Zhang B et al 2022 Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 236 1687
    [21]
    Sun G Q et al 2016 Proc. CSEE 36 615 (in Chinese)
    [22]
    Xiao X G et al 2021 Trans. China Electrotech. Soc. 36 4418 (in Chinese)
    [23]
    Liu Y et al 2021 Plasma Sources Sci. Technol. 30 085005 doi: 10.1088/1361-6595/abf857
    [24]
    Li X D et al 2017 Proc. CSEE 37 3028 (in Chinese)
    [25]
    Panova V A et al 2017 Plasma Phys. Rep. 44 882
    [26]
    Ushakov V Y 2007 Impulse Breakdown of Liquids (Berlin: Springer
    [27]
    Kolb J F et al 2008 J. Phys. D: Appl. Phys. 41 234007
    [28]
    Wang Y B 2012 Theoretical and experimental study of the underwater plasma acoustic source PhD Thesis National University of Defense Technology, Changsha, China (in Chinese)
    [29]
    Zhao Y et al 2021 High Voltage Eng. 47 876 (in Chinese)
    [30]
    Xu J, Sheng L and Gao M 2021 Syst. Sci. Control Eng. 9 60
    [31]
    Sun X H et al 2021 Chin. J. Electron. 30 1152 doi: 10.1049/cje.2021.08.010
    [32]
    He S F et al 2015 IEEE Trans. Instrum. Meas. 64 2636 doi: 10.1109/TIM.2015.2416451
    [33]
    Fan W B, Liu C F and Zhang S Z 2006 Control Decis. 21 73 (in Chinese)
    [34]
    Shan M L et al 2019 Plasma Sci. Technol. 21 074002 doi: 10.1088/2058-6272/ab0b62
  • Related Articles

    [1]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [2]Yaqi YANG (杨亚奇), Weiguo LI (李卫国). Self-organized pattern on the surface of a metal anode in low-pressure DC discharge[J]. Plasma Science and Technology, 2018, 20(3): 35402-035402. DOI: 10.1088/2058-6272/aa997f
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [5]S. Hamideh MORTAZAVI, Mahmood GHORANNEVISS, Soheil PILEHVAR, Sina ESMAEILI, Hamzeh JODAT. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films[J]. Plasma Science and Technology, 2013, 15(4): 362-367. DOI: 10.1088/1009-0630/15/4/10
    [6]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [7]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [8]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10
    [9]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
  • Cited by

    Periodical cited type(3)

    1. Wu, K., Liu, J., Liu, S. et al. Analysis of anomalous transport with temporal fractional transport equations in a bounded domain. Chinese Physics B, 2023, 32(11): 110502. DOI:10.1088/1674-1056/acedf3
    2. Cimpoiasu, R., Constantinescu, R., Pauna, A.S. Solutions of the bullough–dodd model of scalar field through jacobi-type equations. Symmetry, 2021, 13(8): 1529. DOI:10.3390/sym13081529
    3. Petre, E., Selişteanu, D., Roman, M. Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 2021. DOI:10.1016/j.biortech.2021.124836

    Other cited types(0)

Catalog

    Article views (18) PDF downloads (16) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return