Advanced Search+
Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56
Citation: Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56

Novel method for identifying the stages of discharge underwater based on impedance change characteristic

More Information
  • Author Bio:

    Zhongjian KANG: kangzjzh@163.com

  • Corresponding author:

    Zhongjian KANG, kangzjzh@163.com

  • Received Date: July 09, 2023
  • Revised Date: October 18, 2023
  • Accepted Date: October 23, 2023
  • Available Online: April 01, 2024
  • Published Date: April 03, 2024
  • It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter (STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate (K) and the moment (t). Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scr less than 1.761.

  • [1]
    Kozyrev A, Zherlitsyn A and Semeniuk N 2022 Plasma Sci. Technol. 24 035402 doi: 10.1088/2058-6272/ac3973
    [2]
    Cai Z C et al 2023 Plasma Sci. Technol. 25 125501 doi: 10.1088/2058-6272/acde34
    [3]
    Chen W et al 2012 J. Pet. Sci. Eng. 88‒89 67 doi: 10.1016/j.petrol.2012.01.009
    [4]
    Sun A B, Huo C and Zhuang J 2016 High Voltage 1 74 doi: 10.1049/hve.2016.0016
    [5]
    Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
    [6]
    Li Y et al 2021 High Voltage Eng. 47 753 (in Chinese)
    [7]
    Yu Y et al 2020 High Voltage Eng. 46 2951 (in Chinese)
    [8]
    Kang Z J et al 2022 Energy Rep. 8 12522 doi: 10.1016/j.egyr.2022.09.063
    [9]
    Nie Y L et al 2021 High Voltage Eng. 47 2607 (in Chinese)
    [10]
    Chapman N R 1985 J. Acoust. Soc. Am. 78 672 doi: 10.1121/1.392436
    [11]
    Peng J Y et al 2022 Theor. Appl. Fract. Mech. 118 103270 doi: 10.1016/j.tafmec.2022.103270
    [12]
    Oshita D et al 2014 IEEE Trans. Plasma Sci. 42 3209 doi: 10.1109/TPS.2014.2328096
    [13]
    Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
    [14]
    Li X D et al 2016 Phys. Plasmas 23 625
    [15]
    Liu Y et al 2021 High Voltage Eng. 47 2591 (in Chinese)
    [16]
    Jimenez F J et al 2021 J. Phys. D: Appl. Phys. 54 075202
    [17]
    Merciris T, Valensi F and Hamdan A 2020 IEEE Trans. Plasma Sci. 48 3193 doi: 10.1109/TPS.2020.3018052
    [18]
    Liu W J et al 2022 J. Electrochem. Energy Conver. Stor. 19 021005 doi: 10.1115/1.4051941
    [19]
    Ma S K et al 2016 Int. J. Electron. 103 217 doi: 10.1080/00207217.2015.1036317
    [20]
    Zhang B et al 2022 Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 236 1687
    [21]
    Sun G Q et al 2016 Proc. CSEE 36 615 (in Chinese)
    [22]
    Xiao X G et al 2021 Trans. China Electrotech. Soc. 36 4418 (in Chinese)
    [23]
    Liu Y et al 2021 Plasma Sources Sci. Technol. 30 085005 doi: 10.1088/1361-6595/abf857
    [24]
    Li X D et al 2017 Proc. CSEE 37 3028 (in Chinese)
    [25]
    Panova V A et al 2017 Plasma Phys. Rep. 44 882
    [26]
    Ushakov V Y 2007 Impulse Breakdown of Liquids (Berlin: Springer
    [27]
    Kolb J F et al 2008 J. Phys. D: Appl. Phys. 41 234007
    [28]
    Wang Y B 2012 Theoretical and experimental study of the underwater plasma acoustic source PhD Thesis National University of Defense Technology, Changsha, China (in Chinese)
    [29]
    Zhao Y et al 2021 High Voltage Eng. 47 876 (in Chinese)
    [30]
    Xu J, Sheng L and Gao M 2021 Syst. Sci. Control Eng. 9 60
    [31]
    Sun X H et al 2021 Chin. J. Electron. 30 1152 doi: 10.1049/cje.2021.08.010
    [32]
    He S F et al 2015 IEEE Trans. Instrum. Meas. 64 2636 doi: 10.1109/TIM.2015.2416451
    [33]
    Fan W B, Liu C F and Zhang S Z 2006 Control Decis. 21 73 (in Chinese)
    [34]
    Shan M L et al 2019 Plasma Sci. Technol. 21 074002 doi: 10.1088/2058-6272/ab0b62
  • Related Articles

    [1]Long CHEN, Zuojun CUI, Weifu GAO, Ping DUAN, Zichen KAN, Congqi TAN, Junyu CHEN. Effect of ion stress on properties of magnetized plasma sheath[J]. Plasma Science and Technology, 2024, 26(2): 025001. DOI: 10.1088/2058-6272/ad0d4f
    [2]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [3]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [4]WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load[J]. Plasma Science and Technology, 2014, 16(11): 1063-1067. DOI: 10.1088/1009-0630/16/11/12
    [5]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [6]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [7]KANG Weishan(康伟山), YUAN Tao(袁涛), SUN Qian(孙倩), WU Jihong(吴继红), CHEN Jiming(谌继明). Numerical Analyses of Electromagnetic Forces on the ITER Blanket Module Shield Block During Major Disruptions[J]. Plasma Science and Technology, 2014, 16(7): 701-705. DOI: 10.1088/1009-0630/16/7/12
    [8]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [9]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [10]ZHU Dahuan (朱大焕), WANG Kun (王坤), WANG Xianping (王先平), CHEN Junling (陈俊凌), FANG Qianfeng (方前锋). Analysis of residual thermal stress in CVD-W coating as plasma facing material[J]. Plasma Science and Technology, 2012, 14(7): 656-660. DOI: 10.1088/1009-0630/14/7/20

Catalog

    Article views (18) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return