Citation: | Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56 |
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter (STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate (K) and the moment (t). Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scr less than 1.761.
[1] |
Kozyrev A, Zherlitsyn A and Semeniuk N 2022 Plasma Sci. Technol. 24 035402 doi: 10.1088/2058-6272/ac3973
|
[2] |
Cai Z C et al 2023 Plasma Sci. Technol. 25 125501 doi: 10.1088/2058-6272/acde34
|
[3] |
Chen W et al 2012 J. Pet. Sci. Eng. 88‒89 67 doi: 10.1016/j.petrol.2012.01.009
|
[4] |
Sun A B, Huo C and Zhuang J 2016 High Voltage 1 74 doi: 10.1049/hve.2016.0016
|
[5] |
Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
|
[6] |
Li Y et al 2021 High Voltage Eng. 47 753 (in Chinese)
|
[7] |
Yu Y et al 2020 High Voltage Eng. 46 2951 (in Chinese)
|
[8] |
Kang Z J et al 2022 Energy Rep. 8 12522 doi: 10.1016/j.egyr.2022.09.063
|
[9] |
Nie Y L et al 2021 High Voltage Eng. 47 2607 (in Chinese)
|
[10] |
Chapman N R 1985 J. Acoust. Soc. Am. 78 672 doi: 10.1121/1.392436
|
[11] |
Peng J Y et al 2022 Theor. Appl. Fract. Mech. 118 103270 doi: 10.1016/j.tafmec.2022.103270
|
[12] |
Oshita D et al 2014 IEEE Trans. Plasma Sci. 42 3209 doi: 10.1109/TPS.2014.2328096
|
[13] |
Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
|
[14] |
Li X D et al 2016 Phys. Plasmas 23 625
|
[15] |
Liu Y et al 2021 High Voltage Eng. 47 2591 (in Chinese)
|
[16] |
Jimenez F J et al 2021 J. Phys. D: Appl. Phys. 54 075202
|
[17] |
Merciris T, Valensi F and Hamdan A 2020 IEEE Trans. Plasma Sci. 48 3193 doi: 10.1109/TPS.2020.3018052
|
[18] |
Liu W J et al 2022 J. Electrochem. Energy Conver. Stor. 19 021005 doi: 10.1115/1.4051941
|
[19] |
Ma S K et al 2016 Int. J. Electron. 103 217 doi: 10.1080/00207217.2015.1036317
|
[20] |
Zhang B et al 2022 Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 236 1687
|
[21] |
Sun G Q et al 2016 Proc. CSEE 36 615 (in Chinese)
|
[22] |
Xiao X G et al 2021 Trans. China Electrotech. Soc. 36 4418 (in Chinese)
|
[23] |
Liu Y et al 2021 Plasma Sources Sci. Technol. 30 085005 doi: 10.1088/1361-6595/abf857
|
[24] |
Li X D et al 2017 Proc. CSEE 37 3028 (in Chinese)
|
[25] |
Panova V A et al 2017 Plasma Phys. Rep. 44 882
|
[26] |
Ushakov V Y 2007 Impulse Breakdown of Liquids (Berlin: Springer
|
[27] |
Kolb J F et al 2008 J. Phys. D: Appl. Phys. 41 234007
|
[28] |
Wang Y B 2012 Theoretical and experimental study of the underwater plasma acoustic source PhD Thesis National University of Defense Technology, Changsha, China (in Chinese)
|
[29] |
Zhao Y et al 2021 High Voltage Eng. 47 876 (in Chinese)
|
[30] |
Xu J, Sheng L and Gao M 2021 Syst. Sci. Control Eng. 9 60
|
[31] |
Sun X H et al 2021 Chin. J. Electron. 30 1152 doi: 10.1049/cje.2021.08.010
|
[32] |
He S F et al 2015 IEEE Trans. Instrum. Meas. 64 2636 doi: 10.1109/TIM.2015.2416451
|
[33] |
Fan W B, Liu C F and Zhang S Z 2006 Control Decis. 21 73 (in Chinese)
|
[34] |
Shan M L et al 2019 Plasma Sci. Technol. 21 074002 doi: 10.1088/2058-6272/ab0b62
|
[1] | Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1 |
[2] | Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b |
[3] | Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e |
[4] | Jia TIAN (田甲), Wenzheng LIU (刘文正), Weisheng CUI (崔伟胜), Yongjie GAO (高永杰). Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20(8): 85403-085403. DOI: 10.1088/2058-6272/aabedf |
[5] | Carlo POGGI, Théo GUILLAUME, Fabrice DOVEIL, Laurence CHÉRIGIER-KOVACIC. Estimation of the Lyman-α signal of the EFILE diagnostic under static or radiofrequency electric field in vacuum[J]. Plasma Science and Technology, 2018, 20(7): 74001-074001. DOI: 10.1088/2058-6272/aabde3 |
[6] | Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9 |
[7] | LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09 |
[8] | HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12 |
[9] | LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05 |
[10] | FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582. |