Advanced Search+
Yu CHEN, Jiawei LUO, Wen LEI, Yan SHEN, Shuai CAO. Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms[J]. Plasma Science and Technology, 2024, 26(11): 115504. DOI: 10.1088/2058-6272/ad709c
Citation: Yu CHEN, Jiawei LUO, Wen LEI, Yan SHEN, Shuai CAO. Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms[J]. Plasma Science and Technology, 2024, 26(11): 115504. DOI: 10.1088/2058-6272/ad709c

Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms

More Information
  • Author Bio:

    Yan SHEN: shenyan8@mail.sysu.edu.cn

  • Corresponding author:

    Yan SHEN, shenyan8@mail.sysu.edu.cn

  • Received Date: May 02, 2024
  • Revised Date: July 31, 2024
  • Accepted Date: August 13, 2024
  • Available Online: August 18, 2024
  • Published Date: October 01, 2024
  • Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold Eth, maximum sputtering energy Emax and maximum sputtering yield SYmax. In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors (R2 evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an R2 of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%.

  • This work was supported by the National Key Research and Development Program of China (No. 2020YFC2201101), the Shenzhen Key Laboratory of Intelligent Microsatellite Constellation (No. ZDSYS20210623091808026), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110500).

  • [1]
    Brown N P and Walker M L 2020 Appl. Sci. 10 3775 doi: 10.3390/app10113775
    [2]
    Cao H J et al 2015 J. Propul. Power 31 1785 doi: 10.2514/1.b35717
    [3]
    Tinacba E J C, Isobe M and Hamaguchi S 2021 J. Vac. Sci. Technol. A 39 042603 doi: 10.1116/6.0001117
    [4]
    Alves L L et al 2023 Plasma Sources Sci. Technol. 32 023001 doi: 10.1088/1361-6595/acb810
    [5]
    Song L et al 2017 Plasma Sci. Technol. 19 045502 doi: 10.1088/2058-6272/aa57f0
    [6]
    Coburn J W, Winters H F and Chuang T J 1977 J. Appl. Phys. 48 3532 doi: 10.1063/1.324150
    [7]
    Karahashi K and Hamaguchi S 2014 J. Phys. D: Appl. Phys. 47 224008 doi: 10.1088/0022-3727/47/22/224008
    [8]
    Gergs T, Borislavov B and Trieschmann J 2022 J. Vac. Sci. Technol. B 40 012802 doi: 10.1116/6.0001485
    [9]
    Gergs T, Mussenbrock T and Trieschmann J 2023 J. Phys. D: Appl. Phys. 56 194001 doi: 10.1088/1361-6463/acc07e
    [10]
    Preuss R, Arredondo R and Von Toussaint U 2019 Entropy 21 1175 doi: 10.3390/e21121175
    [11]
    Tinacba E J C et al 2021 J. Vac. Sci. Technol. B 39 043203 doi: 10.1116/6.0001230
    [12]
    Cagomoc C M D, Isobe M and Hamaguchi S 2023 J. Vac. Sci. Technol. A 41 023001 doi: 10.1116/6.0002380
    [13]
    Kawase T and Hamaguchi S 2007 Thin Solid Films 515 4883 doi: 10.1016/j.tsf.2006.10.024
    [14]
    Kino H et al 2021 Phys. Plasmas 28 013504 doi: 10.1063/5.0006816
    [15]
    Duan X M et al 2014 J. Alloys Compd. 613 1 doi: 10.1016/j.jallcom.2014.05.221
    [16]
    Gergs T, Mussenbrock T and Trieschmann J 2022 J. Appl. Phys. 132 063302 doi: 10.1063/5.0098040
    [17]
    Fathinezhad M, Abbasitarighat M and Dastan D 2020 Environ. Nanotechnol. Monit. Manag. 14 100307 doi: 10.1016/j.enmm.2020.100307
    [18]
    Dalmaijer E S, Nord C L and Astle D E 2022 BMC Bioinform. 23 205 doi: 10.1186/s12859-022-04675-1
    [19]
    Ghosal S, Bhattacharyya R and Majumder M 2020 Diabetes Metab. Syndr.: Clin. Res. Rev. 14 707 doi: 10.1016/j.dsx.2020.05.026
    [20]
    Benesty J et al Pearson correlation coefficient In: Cohen I et al Noise Reduction in Speech Processing Berlin, Heidelberg: Springer 2009: 1 doi: 10.1007/978-3-642-00296-0_5
    [21]
    Zou J M, Han Y and So S S 2008 Overview of artificial neural networks In Livingstone D J Artificial Neural Networks Totowa: Humana Press 2008: 14 doi: 10.1007/978-1-60327-101-1_2
    [22]
    Cichocki F et al 2022 Front. Phys. 10 876684 doi: 10.3389/fphy.2022.876684
    [23]
    Andreussi T, Saravia M M and Andrenucci M 2019 J. Inst. 14 C05011 doi: 10.1088/1748-0221/14/05/C05011
    [24]
    Rossnagel S M, Westwood W D and Cuomo J J 1990 Handbook of Plasma Processing Technology: Fundamental Etching, Deposition and Surface Interactions (Park Ridge: Noyes Publications
    [25]
    Morrissey L S et al 2022 Astrophys. J. Lett. 925 L6 doi: 10.3847/2041-8213/ac42d8
    [26]
    Kudriavtsev Y et al 2005 Appl. Surf. Sci. 239 273 doi: 10.1016/j.apsusc.2004.06.014
    [27]
    van Amersfoort P W, Tong Y C and Granneman E H A 1985 J. Appl. Phys. 58 2317 doi: 10.1063/1.335953
    [28]
    Robinson M T 1996 Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 115 549 doi: 10.1016/0168-583X(95)01567-1
    [29]
    Gangwar A K et al 2020 Vacuum 177 109353 doi: 10.1016/j.vacuum.2020.109353
    [30]
    Hofsäss H and Stegmaier A 2022 Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 517 49 doi: 10.1016/j.nimb.2022.02.012
  • Related Articles

    [1]Zhao ZHANG, Yaju LI, Guanghui YANG, Qiang ZENG, Xiaolong LI, Liangwen CHEN, Dongbin QIAN, Duixiong SUN, Maogen SU, Lei YANG, Shaofeng ZHANG, Xinwen MA. Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms[J]. Plasma Science and Technology, 2024, 26(5): 055506. DOI: 10.1088/2058-6272/ad1792
    [2]Wei ZHENG, Fengming XUE, Chengshuo SHEN, Yu ZHONG, Xinkun AI, Zhongyong CHEN, Yonghua DING, Ming ZHANG, Zhoujun YANG, Nengchao WANG, Zhichao ZHANG, Jiaolong DONG, Chouyao TANG, Yuan PAN. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124003. DOI: 10.1088/2058-6272/ac9e46
    [3]Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d
    [4]Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685
    [5]ZHANG Weiwei (张卫卫), DENG Baiquan (邓柏权), ZUO Haoyi (左浩毅), ZHENG Xianjun (曾宪俊), CAO Xiaogang (曹小岗), XUE Xiaoyan (薛晓艳), OU Wei (欧巍), CAO Zhi (曹智), GOU Fujun (芶富均). Analysis of Power Model for Linear Plasma Device[J]. Plasma Science and Technology, 2016, 18(8): 844-847. DOI: 10.1088/1009-0630/18/8/09
    [6]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [7]WANG Qiuying (王秋颖), WU Peng (伍鹏), GU Fan (顾璠). Coal Liquefaction by Using Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(7): 654-658. DOI: 10.1088/1009-0630/15/7/10
    [8]S. M. BORGHEI, S. SHAHIDI, M. GHORANNEVISS, Z. ABDOLAHI. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(1): 37-42. DOI: 10.1088/1009-0630/15/1/07
    [9]MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.
    [10]CHEN Mudi (陈牧笛), ZHU Xiaodong (朱晓东), KE Bo (柯博), DING Fang (丁芳), WEN Xiaohui (温晓辉), ZHOU Haiyang (周海洋). Formation of SiC Nanostruture Using Hexamethyldisiloxane During Plasma-Assisted Hot-Filament Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(5): 547-550.
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. Skvortsov, I.V., Shemakhin, A.Y., Danilov, I.Y. et al. Prediction of Characteristics of Inductive Coupled Radio Frequency Discharge at Low Pressure in One-Dimensional Approximation Using Neural Network Approach. High Energy Chemistry, 2024, 58(Suppl 3): S421-S424. DOI:10.1134/S0018143924701273
    2. Liang, C., Huang, D., Lu, S. et al. Full information of system properties inferred from individual particle dynamics. Physics of Plasmas, 2024, 31(11): 113702. DOI:10.1063/5.0239733
    3. Joshi-Thompson, J., Ramisch, M. A neural network for the analysis of Langmuir-probe characteristics. Plasma Physics and Controlled Fusion, 2024, 66(10): 105015. DOI:10.1088/1361-6587/ad7289
    4. Wang, J., Zhou, Y., Du, Q.F. et al. A bidirectional long short-term memory network for electron density diagnostic with double probe. Measurement Science and Technology, 2023, 34(12): 125037. DOI:10.1088/1361-6501/acf77a
    5. Liang, C., Huang, D., Lu, S. et al. Determining global property of dusty plasma from single particle dynamics using machine learning. Physical Review Research, 2023, 5(3): 033086. DOI:10.1103/PhysRevResearch.5.033086
    6. Anirudh, R., Archibald, R., Asif, M.S. et al. 2022 Review of Data-Driven Plasma Science. IEEE Transactions on Plasma Science, 2023, 51(7): 1750-1838. DOI:10.1109/TPS.2023.3268170
    7. Yu, W., Cho, J., Burton, J.C. Extracting forces from noisy dynamics in dusty plasmas. Physical Review E, 2022, 106(3): 035303. DOI:10.1103/PhysRevE.106.035303
    8. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    9. Wang, J., Ji, W., Du, Q. et al. A Long Short-Term Memory Network for Plasma Diagnosis from Langmuir Probe Data. Sensors, 2022, 22(11): 4281. DOI:10.3390/s22114281
    10. Zheng, S., Nie, Q., Huang, T. et al. Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks. Plasma Science and Technology, 2022, 25(2): 025403. DOI:10.1088/2058-6272/ac8dd6

    Other cited types(0)

Catalog

    Figures(6)  /  Tables(4)

    Article views (30) PDF downloads (13) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return