Advanced Search+
Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
Citation: Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09

Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

More Information
  • Received Date: October 23, 2013
  • The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the for- mation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2-10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18-22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4, was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6-12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration.
  • 1 Robertson J. 2002, Material Sci. Eng. R, 37: 129
    2 Jacob W, Moller W. 1993, Appl. Phys. Lett. 63: 1771
    3 Calderon-Moreno J M. 2006, Diamond & Related Materials, 15: 958
    4 Khriachtchev L Yu, Lappalainen R, Hakovirta M, et al. 1997, Diamond & Related Materials, 6: 694
    5 Voevodin A A, Donley M S, Zabinski J S. 1997, Surf. Coat. Technol., 92: 42
    6 Kahn M, Menegazzo N, Mizaikoff B, et al. 2007, Plasma Processes and Polymers, 4: S200
    7 Cicala G, Bruno P and Losacco A M. 2004, Diamond & Related Materials, 13: 1361
    8 Li H, Xu T, Chen J, et al. 2003. J. Phys. D: Appl. Phys., 36: 3183
    9 Li J, Tian X, Gong C, et al. 2009, Rev. Sci. Instrum., 80: 123504
    10 Yang L, Xin Y, Xu H, et al. 2010, Plasma Science and Technology, 12: 53
    11 Chouquet C, Gerbaud G, Bardet M, et al. 2010, Surf. Coat. Technol., 204: 1339
    12 Ravi N, Bukhovets V L, Varshavskayal G, et al. 2007, Diamond & Related Materials, 16: 90
    13 Guo G, Tang G, Wang Y, et al. 2011, Applied Surface Science, 157: 4738
    14 Basu M, Dutta J, Chaudhuri S, et al. 1996, Vacuum, 47: 233
    15 Prawer S, Nugent K W, Lifshitz Y, et al. 1996, Diamond & Related Materials, 5: 433
    16 Piazzaa F, Golanski A, Schulze S, et al. 2003, Appl. Phys. Lett., 82: 358
    17 Beeman D, Silverman J, Lynds R, et al. 1984. Phys. Review B, 30: 870
    18 Ferrari A C and Robertson J. 2001, Physical Review B, 63: 121405(R)
    19 Baby A, Mahony C M O and Maguire P D. 2011, Plasma Sources Sci. Technol., 20: 015003
    20 Oshiro T, Yamazato M, Higa A, et al. 2007, Jpn. J. Appl. Phys., 46: 756
    21 Ager III J W, Silva S R P, and Robertson J. 1997, IEEE Trans. Magn., 33: 3148
    22 Gordillo-Vazquez F J, Gomez-Alexandre C, and Albella J M. 2001, Plasma Sources Sci. Technol., 10: 99
    23 Ilberg L, Manis-Levy H, Raveh A, et al. 2013, Diamond & Related Materials, 38: 79
  • Related Articles

    [1]Junxia RAN (冉俊霞), Haiyun LUO (罗海云), Caixia LI (李彩霞), Xiaowei LI (李晓苇), Xuechen LI (李雪辰). Measurement of the first Townsend's ionization coefficient for atmospheric pressure neon by a dielectric barrier discharge[J]. Plasma Science and Technology, 2020, 22(10): 105401. DOI: 10.1088/2058-6272/ab935b
    [2]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [3]R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383
    [4]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505
    [7]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
    [8]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [9]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
    [10]YAO Lianghua (姚良骅), ZHAO Dawei (赵大为), FENG Beibin (冯北滨), CHEN.Chengyuan (陈程远), ZHOU Yan(周艳), HAN Xiaoyu (韩晓玉), LI Yonggao (李永高), Jerome BUCALOSSI, Duan Xuru (段旭如). Comparison of Supersonic Molecular Beam Injection from both low field side and high field side of HL-2A[J]. Plasma Science and Technology, 2010, 12(5): 529-534.

Catalog

    Article views (217) PDF downloads (1433) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return