Advanced Search+
YU Youli(於有利), ZHOU Weidong(周卫东), QIAN Huiguo(钱慧国), SU Xuejiao(苏雪娇), REN Ke(任可). Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate[J]. Plasma Science and Technology, 2014, 16(7): 683-687. DOI: 10.1088/1009-0630/16/7/09
Citation: YU Youli(於有利), ZHOU Weidong(周卫东), QIAN Huiguo(钱慧国), SU Xuejiao(苏雪娇), REN Ke(任可). Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate[J]. Plasma Science and Technology, 2014, 16(7): 683-687. DOI: 10.1088/1009-0630/16/7/09

Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate

Funds: supported by National Natural Science Foundation of China (No. 61178034), Key Research Project of University of Zhejiang Province, China (No. ZD2009006) and the Program for Innovative Research Team, Zhejiang Normal University, China
More Information
  • Received Date: May 02, 2013
  • Toxic metals such as lead and chromium in aqueous solutions have been analyzed simultaneously by laser-induced breakdown spectroscopy (LIBS), in which the ordinary printing paper is used as a liquid absorber which was immerged into Pb(NO 3 ) 2 and Cr(NO 3 ) 3 aqueous solution to enrich the heavy metals. This method overcomes the drawbacks of splashing and low sensitivity in ordinary LIBS analysis of water, in which a laser beam is directly focused on a liquid surface. A good signal intensity and reproducibility has been demonstrated. The Pb 405.78 nm and Cr 427.48 nm spectral lines are used as the analytical lines. The variation of line intensity with immersion time was investigated. The calibration curve for quantitative measurement of Pb and Cr in water was established, and the detection limits are 0.033 mg/L and 0.026 mg/L respectively, which is about 2-3 orders of magnitude better than that in the ordinary LIBS analysis of heavy metal in solution.
  • 1.Tong S, von Schirnding Y E, Prapamontol T. 2000, Bull World Health Organ, 78: 1068
    2.Horiguchi H, Teranishi H, Niiya K, et al. 1994, Arch..21.Vander Wal R L, Ticich T M, West J R, et al. 1999,Toxicol., 68: 632.
    3.Antonio M T, Leret M L. 2000, Life Sci., 67: 635.22.Chen Z, Li H, Zhao F, et al. 2008, Spectrochim. Acta.
    4.Lidsky T I, Schneider J S. 2003, Brain, 126: 5.Part B, 63: 64.
    5.Nuyts G D, Elseviers M M, and De Broe M E. 1989,.23.Xiu Junshan, Hou Huaming, Zhong Shilei, et al. 2011,.Toxicol. Lett., 46: 31.Chin. J. Lasers, 38: 0815003 (in Chinese).
    6.Il’yasova D, Schwartz G G. 2005, Toxicol. Appl. Phar- 24.Alamelu D, Sarkar A, Aggarwal S K. 2008, Talanta,macol., 207: 179.77: 256.
    7.Al-Saleh I, Coskun S, Mashhour A, et al. 2008, Int. J..25.Yaroshchyk Pavel, Morrison Richard J S, Body Doug,Hyg. Environ. Health, 211: 560.et al. 2005, Spectrochim. Acta Part B, 60: 1482.
    8.Edwards M, Triantafyllidou S, Best D. 2009, Environ..26.Schmidt N E, Goode S R. 2002, Appl. Spectrosc., 56:Sci. Technol., 43: 1618.370.
    9.Cabrera C, Lopez M C, Gallego C, et al. 1995, Sci..27.Dockey C R, Pender J E, and Goode S R. 2005, Appl.Total Environ., 159: 17.Spectrosc., 59: 252.
    10.Zhou W, Li K, Shen Q, et al. 2010, Opt. Express., 18:.28.Chen Z, Li H, Zhao F, and Li R. 2008, J. Anal. At.2573.Spectrom., 23: 871.
    11.Char. B, Harith M A. 2002, Spectrochim. Acta Part.29.Wu Jianglai, Fu Yuanxia, LI Yi, et al. 2008, Spec-B, 57: 1141.troscopy and Spectra Analysis, 28: 1979 (in Chinese).
    12.Yuan Tingbi, Wang Zhe, Li Lizhi, et al. 2012, Applied.30.Zhong Shilei, Lu Yuan, Cheng Kai, et al. 2011, Spec-Optics, 51: B22.troscopy and Spectral Analysis, 31: 1458 (in Chinese).
    13.Sturm V, Noll R. 2003, Appl. Opt., 42: 6221.31.Zhou W D, Li K X, Li X F, et al. 2011, Opt. Lett., 36:.
    14.Li Lizhi, Wang Zhe, Li Zheng, et al. 2011, J. Anal. At..2961.Spectrom., 26: 2274.32.Li Kexue, Zhou WD, Shen Q M, et al. 2010, Spec-
    15.Feng Jie, Wang Zhe,.Li.Zheng,.et.al..2010, Spec- trochim. Acta Part B, 65: 420.trochim. Acta Part B, 65: 549.33.Zhou W D, Li K X, Qian H G, et al. 2012, Appl. Opt.,.
    16.Rai Virendra N, Yueh Fang Yu, and Singh Jagdish P..51: B42.2008, Appl. Opt., 47: G21.34.Vieitez M O, Hedberg J, Launila O, et al. 2005, Spec-
    17.Cremers D A, Radziemski L J, and Loree T T. 1984,.trochim. Acta Part B, 60: 920. Appl. Spectrosc., 38: 721.35.Lazic V, Barbini R, Colao F, et al. 2001, Spectrochim..
    18.Arca G, Ciucci A, Palleschi V, et al. 1997, Appl. Spec- Acta Part B, 56: 807.trosc., 51: 1102.
    19.C′aceres J O, Tornero L′opez J, Telle H H, et al. 2001, Spectrochim. Acta Part B, 56: 831.
    20.D′.az Pace D M, D’Angelo C A, Bertuccelli D, et al..E-m ailaddress of corresponding author.2006, Spectrochim. Acta Part B, 61: 929.
  • Related Articles

    [1]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [2]Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821
    [3]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [4]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [5]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [6]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [7]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [8]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [9]Sergey S. GOLIK, Alexey A. ILYIN, Michael Yu. BABIY, Yulia S. BIRYUKOVA, Vladimir V. LISITSA, Oleg A. BUKIN. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 975-978. DOI: 10.1088/1009-0630/17/11/16
    [10]LUO Yongfen, JI Haiying, HUANG Ping, LI Yanming. Chaotic Characteristic of Time Series of Partial Discharge in Oil-Paper Insulation[J]. Plasma Science and Technology, 2011, 13(6): 740-746.

Catalog

    Article views (244) PDF downloads (1090) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return