Advanced Search+
ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09
Citation: ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09

The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

  • Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return