Advanced Search+
LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
Citation: LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05

Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma

Funds: supported by National Natural Science Foundation of China (No. 11304235) and the Director Fund of WNLO
More Information
  • Received Date: September 13, 2015
  • The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn II lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm −3 to 1.1×1017 cm −3, for delay times between 0.1 µs and 2.2 µs. We also investigated the effect of the laser pulse energy on SnO 2 plasma.
  • Related Articles

    [1]Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
    [2]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [3]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [4]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [5]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [6]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [7]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]WU Tao (吴涛), WANG Xinbing (王新兵), WANG Shaoyi (王少义). Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph[J]. Plasma Science and Technology, 2013, 15(5): 435-438. DOI: 10.1088/1009-0630/15/5/08
    [10]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09

Catalog

    Article views (347) PDF downloads (715) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return