Advanced Search+
M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b
Citation: M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b

Soliton formation in electron-temperature-gradient-driven magnetoplasma

More Information
  • Received Date: July 14, 2017
  • Electron-temperature-gradient (ETG)-driven solitons are studied in a plasma. We derive the linear dispersion relation and an admitted solitary wave solution Korteweg–de Vries-type equation (KdV) for the ETG mode in the nonlinear regime by using the Braginskii model and a transformation. It is found that the ETG mode supports only rarefactive solitons. It is also observed that the ratio of electron-to-ion temperature τ= Te/Ti the ratio of gradient scale lengths ηe = L n/LT and the magnetic field B affect both the amplitude and width of a soliton. It is found that the soliton profile changes with variation in these parameters. We apply the homotopy perturbation method to the derived KdV equation. It is found this method is computationally attractive and the results are very impressive. This work may be useful to study the low electrostatic modes in inhomogeneous electron–ion plasma with density and ETG gradients. For illustration, the model has been applied to tokamak plasma.
  • [1]
    Kadomtsev B B 1965 Plasma Turbulence (New York: Academic)
    [2]
    Mikhailovskii A B 1974 Theory of Plasma Instabilities (New York: Consultants Bureau)
    [3]
    Hasegawa A and Mima K 1978 Phys. Fluids 21 87
    [4]
    Liewer P C 1985 Nucl. Fusion 25 543
    [5]
    Coppy B, Rosenbluth M N and Sagedeev R Z 1967 Phys. Fluids 10 582
    [6]
    Liu C S 1971 Phys. Rev. Lett. 27 1637
    [7]
    Rozhanskii V A 1981 Pis’ma Zh. Eksp. Teor. Fiz. 34 60
    [8]
    Lee Y C et al 1987 Phys. Fluids 30 1331
    [9]
    Yu M Y and Shukla P K 1988 Phys. Rev. A 37 3434
    [10]
    Chamberlain J W 1963 J. Geophys. Res. 68 5667
    [11]
    Dragila R and Vukovic S 1988 Phys. Rev. Lett. 60 1498
    [12]
    Coppi B et al 1966 Phys. Rev. Lett. 17 377
    [13]
    Kadomtsev B B and Pogutse O P 1969 Sov. Phys. -Dokl. 14 470
    [14]
    Kadomtsev B B and Pogutse O P 1970 Turbulence in toroidal systems ed A M A Leontovich Reviews of Plasma Physics (New York: Consultants Bureau) p 249
    [15]
    Shukla P K 1990 Phys. Fluids B 2 848
    [16]
    Shukla P K and Weiland J 1989 Phys. Lett. A 137 132
    [17]
    Bharuthram R and Shukla P K 1987 Plasma Phys. Control. Fusion 29 1695
    [18]
    Shukla P K and Murtaza G 1989 Phys. Fluids B 1 1141
    [19]
    Coppi B and Pegoraro F 1977 Nucl. Fusion 17 969
    [20]
    Kadomtsev B B and Pogutse O P 1971 Nucl. Fusion 11 67
    [21]
    Liang Y et al 2011 Nucl. Fusion 51 073001
    [22]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
    [23]
    Hirshman S P and Sigmar D J 1981 Nucl. Fusion 21 1079
    [24]
    Balescu R 1988 Transport Processes in Plasmas Amsterdam: North-Holland)
    [25]
    Sugama H and Okamoto M 1996 Phys. Plasmas 3 2379
    [26]
    Hassam A B et al 1990 Phys. Fluids B 2 1822
    [27]
    Jarmén A, Andersson P and Weiland J 1987 Nucl. Fusion 27 941
    [28]
    Shukla P K 1990 Phys. Scr. 42 725
    [29]
    Khan M Y et al 2017 Nucl. Fusion 57 046027
    [30]
    Khan M Y, Iqbal J and Haq A 2014 Phys. Plasmas 21 052308
    [31]
    Temerin M et al 1982 Phys. Rev. Lett. 48 1175
    [32]
    Bostr?m R et al 1988 Phys. Rev. Lett. 61 82
    [33]
    Block L P and Falthammar C G 1990 J. Geophys. Res. 95 5877
    [34]
    Nielsen A H, Rasmussen J J and Schmidt M R 1996 Phys. Scr. 63 49
    [35]
    Forslund D Q and Shonk C R 1970 Phys. Rev. Lett. 25 1699
    [36]
    Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243
    [37]
    Sabry R et al 2008 Phys. Plasmas 15 122308
    [38]
    Tasso T 1967 Phys. Lett. A 24 618
    [39]
    Lakhin V P, Mikhailovskii A B and Onishchenko O G 1988 Plasma Phys. Control. Fusion 30 457
    [40]
    Zakir U et al 2016 Phys. Plasmas 23 042104
    [41]
    Aburdzhaniya G D, Mikhailovskii A B and Sharapov S E 1984 Phys. Lett. A 100 134
    [42]
    He J H 1999 Comput. Methods Appl. Mech. Eng. 178 257
    [43]
    He J H 2003 Appl. Math. Comput. 135 73
    [44]
    Mousa M M and Kaltayev A 2009 Appl. Math. Sci. 3 1061
    [45]
    Geng F Z and Cui M G2009 J. Comput. Appl. Math. 233 165
    [46]
    GengFZ andCuiMG 2010 Int. J. Nonlinear Sci. Numer. Simul. 10 597
    [47]
    Weiland J 2000 Collective Modes in Inhomogeneous Media: Kinetic and Advanced Fluid Theory (Bristol: IOP Publishing)
    [48]
    Shukla P K, Murtaza G and Weiland J 1990 J. Plasma Phys. 44 393
    [49]
    Kolebaje O and Oyewande O 2012 Int. J. Basic Appl. Sci. 1 321
    [50]
    Kath W L and Smyth N F 1995 Phys. Rev. E 51 1484
    [51]
    Iqbal J and Khan M Y 2017 Phys. Plasmas 24 042506
    [52]
    Khan M Y and Iqbal J 2017 Phys. Plasmas 24 082514
  • Related Articles

    [1]Yifei LIU, Jiquan LI. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport[J]. Plasma Science and Technology, 2024, 26(1): 015101. DOI: 10.1088/2058-6272/ad0c9b
    [2]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [5]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [6]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [7]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [8]ATA-UR-RAHMAN, S. A. KHAN, A. QAMAR. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas[J]. Plasma Science and Technology, 2015, 17(12): 1000-1005. DOI: 10.1088/1009-0630/17/12/04
    [9]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
    [10]HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.
  • Cited by

    Periodical cited type(3)

    1. Su, M., Yang, Z., Cai, K. et al. Study on the tribocharging properties of MgCO3 particles based on LFN-en-A model. Measurement Science and Technology, 2024, 35(11): 115305. DOI:10.1088/1361-6501/ad662b
    2. Jiang, D., Hu, S., Cheng, W. Rock breaking model implementation for rigless drilling with robust control of vibration. Applied Mathematics and Nonlinear Sciences, 2024, 9(1): 20230684. DOI:10.2478/amns.2023.2.00684
    3. Yan, G., Fu, H., Zhao, Y. et al. A review on optimizing potentials of high voltage pulse breakage technology based on electrical breakdown in water. Powder Technology, 2022. DOI:10.1016/j.powtec.2022.117293

    Other cited types(0)

Catalog

    Article views (197) PDF downloads (366) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return