Citation: | M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b |
[1] |
Kadomtsev B B 1965 Plasma Turbulence (New York: Academic)
|
[2] |
Mikhailovskii A B 1974 Theory of Plasma Instabilities (New York: Consultants Bureau)
|
[3] |
Hasegawa A and Mima K 1978 Phys. Fluids 21 87
|
[4] |
Liewer P C 1985 Nucl. Fusion 25 543
|
[5] |
Coppy B, Rosenbluth M N and Sagedeev R Z 1967 Phys. Fluids 10 582
|
[6] |
Liu C S 1971 Phys. Rev. Lett. 27 1637
|
[7] |
Rozhanskii V A 1981 Pis’ma Zh. Eksp. Teor. Fiz. 34 60
|
[8] |
Lee Y C et al 1987 Phys. Fluids 30 1331
|
[9] |
Yu M Y and Shukla P K 1988 Phys. Rev. A 37 3434
|
[10] |
Chamberlain J W 1963 J. Geophys. Res. 68 5667
|
[11] |
Dragila R and Vukovic S 1988 Phys. Rev. Lett. 60 1498
|
[12] |
Coppi B et al 1966 Phys. Rev. Lett. 17 377
|
[13] |
Kadomtsev B B and Pogutse O P 1969 Sov. Phys. -Dokl. 14 470
|
[14] |
Kadomtsev B B and Pogutse O P 1970 Turbulence in toroidal systems ed A M A Leontovich Reviews of Plasma Physics (New York: Consultants Bureau) p 249
|
[15] |
Shukla P K 1990 Phys. Fluids B 2 848
|
[16] |
Shukla P K and Weiland J 1989 Phys. Lett. A 137 132
|
[17] |
Bharuthram R and Shukla P K 1987 Plasma Phys. Control. Fusion 29 1695
|
[18] |
Shukla P K and Murtaza G 1989 Phys. Fluids B 1 1141
|
[19] |
Coppi B and Pegoraro F 1977 Nucl. Fusion 17 969
|
[20] |
Kadomtsev B B and Pogutse O P 1971 Nucl. Fusion 11 67
|
[21] |
Liang Y et al 2011 Nucl. Fusion 51 073001
|
[22] |
Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
|
[23] |
Hirshman S P and Sigmar D J 1981 Nucl. Fusion 21 1079
|
[24] |
Balescu R 1988 Transport Processes in Plasmas Amsterdam: North-Holland)
|
[25] |
Sugama H and Okamoto M 1996 Phys. Plasmas 3 2379
|
[26] |
Hassam A B et al 1990 Phys. Fluids B 2 1822
|
[27] |
Jarmén A, Andersson P and Weiland J 1987 Nucl. Fusion 27 941
|
[28] |
Shukla P K 1990 Phys. Scr. 42 725
|
[29] |
Khan M Y et al 2017 Nucl. Fusion 57 046027
|
[30] |
Khan M Y, Iqbal J and Haq A 2014 Phys. Plasmas 21 052308
|
[31] |
Temerin M et al 1982 Phys. Rev. Lett. 48 1175
|
[32] |
Bostr?m R et al 1988 Phys. Rev. Lett. 61 82
|
[33] |
Block L P and Falthammar C G 1990 J. Geophys. Res. 95 5877
|
[34] |
Nielsen A H, Rasmussen J J and Schmidt M R 1996 Phys. Scr. 63 49
|
[35] |
Forslund D Q and Shonk C R 1970 Phys. Rev. Lett. 25 1699
|
[36] |
Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243
|
[37] |
Sabry R et al 2008 Phys. Plasmas 15 122308
|
[38] |
Tasso T 1967 Phys. Lett. A 24 618
|
[39] |
Lakhin V P, Mikhailovskii A B and Onishchenko O G 1988 Plasma Phys. Control. Fusion 30 457
|
[40] |
Zakir U et al 2016 Phys. Plasmas 23 042104
|
[41] |
Aburdzhaniya G D, Mikhailovskii A B and Sharapov S E 1984 Phys. Lett. A 100 134
|
[42] |
He J H 1999 Comput. Methods Appl. Mech. Eng. 178 257
|
[43] |
He J H 2003 Appl. Math. Comput. 135 73
|
[44] |
Mousa M M and Kaltayev A 2009 Appl. Math. Sci. 3 1061
|
[45] |
Geng F Z and Cui M G2009 J. Comput. Appl. Math. 233 165
|
[46] |
GengFZ andCuiMG 2010 Int. J. Nonlinear Sci. Numer. Simul. 10 597
|
[47] |
Weiland J 2000 Collective Modes in Inhomogeneous Media: Kinetic and Advanced Fluid Theory (Bristol: IOP Publishing)
|
[48] |
Shukla P K, Murtaza G and Weiland J 1990 J. Plasma Phys. 44 393
|
[49] |
Kolebaje O and Oyewande O 2012 Int. J. Basic Appl. Sci. 1 321
|
[50] |
Kath W L and Smyth N F 1995 Phys. Rev. E 51 1484
|
[51] |
Iqbal J and Khan M Y 2017 Phys. Plasmas 24 042506
|
[52] |
Khan M Y and Iqbal J 2017 Phys. Plasmas 24 082514
|
[1] | Yifei LIU, Jiquan LI. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport[J]. Plasma Science and Technology, 2024, 26(1): 015101. DOI: 10.1088/2058-6272/ad0c9b |
[2] | Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f |
[3] | Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8 |
[4] | Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f |
[5] | Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403 |
[6] | M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002 |
[7] | SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01 |
[8] | ATA-UR-RAHMAN, S. A. KHAN, A. QAMAR. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas[J]. Plasma Science and Technology, 2015, 17(12): 1000-1005. DOI: 10.1088/1009-0630/17/12/04 |
[9] | CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05 |
[10] | HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688. |
1. | Su, M., Yang, Z., Cai, K. et al. Study on the tribocharging properties of MgCO3 particles based on LFN-en-A model. Measurement Science and Technology, 2024, 35(11): 115305. DOI:10.1088/1361-6501/ad662b |
2. | Jiang, D., Hu, S., Cheng, W. Rock breaking model implementation for rigless drilling with robust control of vibration. Applied Mathematics and Nonlinear Sciences, 2024, 9(1): 20230684. DOI:10.2478/amns.2023.2.00684 |
3. | Yan, G., Fu, H., Zhao, Y. et al. A review on optimizing potentials of high voltage pulse breakage technology based on electrical breakdown in water. Powder Technology, 2022. DOI:10.1016/j.powtec.2022.117293 |