Advanced Search+
M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b
Citation: M Yaqub KHAN, Javed IQBAL. Soliton formation in electron-temperature-gradient-driven magnetoplasma[J]. Plasma Science and Technology, 2018, 20(2): 25101-025101. DOI: 10.1088/2058-6272/aa8f3b

Soliton formation in electron-temperature-gradient-driven magnetoplasma

More Information
  • Received Date: July 14, 2017
  • Electron-temperature-gradient (ETG)-driven solitons are studied in a plasma. We derive the linear dispersion relation and an admitted solitary wave solution Korteweg–de Vries-type equation (KdV) for the ETG mode in the nonlinear regime by using the Braginskii model and a transformation. It is found that the ETG mode supports only rarefactive solitons. It is also observed that the ratio of electron-to-ion temperature τ= Te/Ti the ratio of gradient scale lengths ηe = L n/LT and the magnetic field B affect both the amplitude and width of a soliton. It is found that the soliton profile changes with variation in these parameters. We apply the homotopy perturbation method to the derived KdV equation. It is found this method is computationally attractive and the results are very impressive. This work may be useful to study the low electrostatic modes in inhomogeneous electron–ion plasma with density and ETG gradients. For illustration, the model has been applied to tokamak plasma.
  • [1]
    Kadomtsev B B 1965 Plasma Turbulence (New York: Academic)
    [2]
    Mikhailovskii A B 1974 Theory of Plasma Instabilities (New York: Consultants Bureau)
    [3]
    Hasegawa A and Mima K 1978 Phys. Fluids 21 87
    [4]
    Liewer P C 1985 Nucl. Fusion 25 543
    [5]
    Coppy B, Rosenbluth M N and Sagedeev R Z 1967 Phys. Fluids 10 582
    [6]
    Liu C S 1971 Phys. Rev. Lett. 27 1637
    [7]
    Rozhanskii V A 1981 Pis’ma Zh. Eksp. Teor. Fiz. 34 60
    [8]
    Lee Y C et al 1987 Phys. Fluids 30 1331
    [9]
    Yu M Y and Shukla P K 1988 Phys. Rev. A 37 3434
    [10]
    Chamberlain J W 1963 J. Geophys. Res. 68 5667
    [11]
    Dragila R and Vukovic S 1988 Phys. Rev. Lett. 60 1498
    [12]
    Coppi B et al 1966 Phys. Rev. Lett. 17 377
    [13]
    Kadomtsev B B and Pogutse O P 1969 Sov. Phys. -Dokl. 14 470
    [14]
    Kadomtsev B B and Pogutse O P 1970 Turbulence in toroidal systems ed A M A Leontovich Reviews of Plasma Physics (New York: Consultants Bureau) p 249
    [15]
    Shukla P K 1990 Phys. Fluids B 2 848
    [16]
    Shukla P K and Weiland J 1989 Phys. Lett. A 137 132
    [17]
    Bharuthram R and Shukla P K 1987 Plasma Phys. Control. Fusion 29 1695
    [18]
    Shukla P K and Murtaza G 1989 Phys. Fluids B 1 1141
    [19]
    Coppi B and Pegoraro F 1977 Nucl. Fusion 17 969
    [20]
    Kadomtsev B B and Pogutse O P 1971 Nucl. Fusion 11 67
    [21]
    Liang Y et al 2011 Nucl. Fusion 51 073001
    [22]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
    [23]
    Hirshman S P and Sigmar D J 1981 Nucl. Fusion 21 1079
    [24]
    Balescu R 1988 Transport Processes in Plasmas Amsterdam: North-Holland)
    [25]
    Sugama H and Okamoto M 1996 Phys. Plasmas 3 2379
    [26]
    Hassam A B et al 1990 Phys. Fluids B 2 1822
    [27]
    Jarmén A, Andersson P and Weiland J 1987 Nucl. Fusion 27 941
    [28]
    Shukla P K 1990 Phys. Scr. 42 725
    [29]
    Khan M Y et al 2017 Nucl. Fusion 57 046027
    [30]
    Khan M Y, Iqbal J and Haq A 2014 Phys. Plasmas 21 052308
    [31]
    Temerin M et al 1982 Phys. Rev. Lett. 48 1175
    [32]
    Bostr?m R et al 1988 Phys. Rev. Lett. 61 82
    [33]
    Block L P and Falthammar C G 1990 J. Geophys. Res. 95 5877
    [34]
    Nielsen A H, Rasmussen J J and Schmidt M R 1996 Phys. Scr. 63 49
    [35]
    Forslund D Q and Shonk C R 1970 Phys. Rev. Lett. 25 1699
    [36]
    Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243
    [37]
    Sabry R et al 2008 Phys. Plasmas 15 122308
    [38]
    Tasso T 1967 Phys. Lett. A 24 618
    [39]
    Lakhin V P, Mikhailovskii A B and Onishchenko O G 1988 Plasma Phys. Control. Fusion 30 457
    [40]
    Zakir U et al 2016 Phys. Plasmas 23 042104
    [41]
    Aburdzhaniya G D, Mikhailovskii A B and Sharapov S E 1984 Phys. Lett. A 100 134
    [42]
    He J H 1999 Comput. Methods Appl. Mech. Eng. 178 257
    [43]
    He J H 2003 Appl. Math. Comput. 135 73
    [44]
    Mousa M M and Kaltayev A 2009 Appl. Math. Sci. 3 1061
    [45]
    Geng F Z and Cui M G2009 J. Comput. Appl. Math. 233 165
    [46]
    GengFZ andCuiMG 2010 Int. J. Nonlinear Sci. Numer. Simul. 10 597
    [47]
    Weiland J 2000 Collective Modes in Inhomogeneous Media: Kinetic and Advanced Fluid Theory (Bristol: IOP Publishing)
    [48]
    Shukla P K, Murtaza G and Weiland J 1990 J. Plasma Phys. 44 393
    [49]
    Kolebaje O and Oyewande O 2012 Int. J. Basic Appl. Sci. 1 321
    [50]
    Kath W L and Smyth N F 1995 Phys. Rev. E 51 1484
    [51]
    Iqbal J and Khan M Y 2017 Phys. Plasmas 24 042506
    [52]
    Khan M Y and Iqbal J 2017 Phys. Plasmas 24 082514
  • Related Articles

    [1]Hua LI, Minglei LI, Hongcheng ZHU, Yuhan ZHANG, Xiaoxia DU, Zhencheng CHEN, Wenxiang XIAO, Kun LIU. Realizing high efficiency and large-area sterilization by a rotating plasma jet device[J]. Plasma Science and Technology, 2022, 24(4): 045501. DOI: 10.1088/2058-6272/ac550d
    [2]Yemin ZHAN (詹烨旻), Bin GUO (郭斌). Negative refraction in a rotational plasma metamaterial[J]. Plasma Science and Technology, 2019, 21(1): 15002-015002. DOI: 10.1088/2058-6272/aae7da
    [3]Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
    [4]Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
    [5]Mook Tzeng LIM (林木森), Ahmad Zulazlan SHAH ZULKIFLI, Kanesh Kumar JAYAPALAN, Oihoong CHIN. Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features[J]. Plasma Science and Technology, 2017, 19(9): 95402-095402. DOI: 10.1088/2058-6272/aa7382
    [6]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [7]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [10]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13

Catalog

    Article views (197) PDF downloads (366) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return