Advanced Search+
Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
Citation: Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b

Investigation on the mode of AC discharge in H2O affected by temperature

Funds: This work is supported by the Chinese Universities Scientific Fund (2232014G1-39, DHU-16T10903), the Innovation Program of Shanghai Municipal Education Commission (DHU-X171091605), and the Innovation Funding Project of Donghua University (EG201615).
More Information
  • Received Date: December 21, 2017
  • In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.
  • [1]
    De Baerdemaeker F, Monte M and Leys C 2005 IEEE Trans. Plasma Sci. 33 492
    [2]
    Kurahashi M, Katsura S and Mizuno A 1997 J. Electrostat. 42 93
    [3]
    Kuskova N I 1983 Sov. Phys. Tech. Phys. 28 591
    [4]
    Rogers R L et al 1999 Plasma Sound Source Basic Research (Austin, TX)
    [5]
    Bruggeman P J, Leys C A and Vierendeels J A 2006 J. Phys. D: Appl. Phys. 99 116101
    [6]
    Yanshin é V, Ovchinnikov I T and Vershinin Y N 1974 Sov. Phys. Tech. Phys. 18 1303
    [7]
    Yoshino K et al 1982 J. Electrostat. 12 323
    [8]
    Sugiarto A T and Sato M 2001 Thin Solid Films 386 295
    [9]
    Sun B et al 1998 J. Electrostat. 43 115
    [10]
    Xie G X et al 2013 IEEE Trans. Plasma Sci. 41 481
    [11]
    Xie G X et al 2012 Appl. Phys. Lett. 101 131602
    [12]
    Xie G X et al 2016 Sci. Rep. 6 25002
    [13]
    Zhu L N et al 2013 Plasma Sci. Technol. 15 1053
    [14]
    Wang X P et al 2014 Plasma Sci. Technol. 16 479
    [15]
    H?fft O and Endres F 2011 Phys. Chem. Chem. Phys. 13 13472
    [16]
    Anpilov A M et al 2001 J. Phys. D: Appl. Phys. 34 993
    [17]
    Sharma A K et al 1993 Hazard. Waste Hazard. Mater. 10 209
    [18]
    Malik M A, Ghaffar A and Malik S A 2001 Plasma Sources Sci. Technol. 10 82
    [19]
    NIST atomic spectra database lines form https://physics.nist. gov/PhysRefData/ASD/lines_ form.html
  • Related Articles

    [1]ubao JIN (金福宝), Yuanxiang ZHOU (周远翔), Bin LIANG (梁斌), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵). Effects of temperature on creepage discharge characteristics in oil-impregnated pressboard insulation under combined AC–DC voltage[J]. Plasma Science and Technology, 2019, 21(5): 54002-054002. DOI: 10.1088/2058-6272/aaff01
    [2]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [3]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [4]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [5]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [6]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [7]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [8]SUN Weizhong (孙伟中), ZHAO Chengli (赵成利), ZHANG Junyuan (张俊源), CHEN Feng (陈峰), GOU Fujun (苟富均). An MD Study of the Temperature E®ect on H Interacting with SiC (100)[J]. Plasma Science and Technology, 2012, 14(12): 1121-1124. DOI: 10.1088/1009-0630/14/12/16
    [9]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
    [10]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11

Catalog

    Article views (230) PDF downloads (493) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return