Advanced Search+
Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
Citation: Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19

Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB109001 and 2013GB104003), National Natural Science Foundation of China (Grant Nos. 11375195, 11505053, and 11575184).
More Information
  • Received Date: November 21, 2017
  • A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0×1018 m−2.
  • [1]
    Donné A J H 1995 Rev. Sci. Instrum. 66 3407
    [2]
    Li Y G et al 2015 Plasma Sci. Technol. 17 430
    [3]
    Zhou Y et al 2007 Rev. Sci. Instrum. 78 113503
    [4]
    Zhou Y et al 2012 Rev. Sci. Instrum. 83 10E336
    [5]
    Zhang W et al 2017 Plasma Sci. Technol. 19 075603
    [6]
    Zhou Y et al 2009 Plasma Sci. Technol. 11 413
    [7]
    Akiyama T et al 2015 J. Instrum. 10 P09022
    [8]
    Akiyama T et al 2015 Nucl. Fusion 55 093032
    [9]
    Akiyama T et al 2010 Plasma Fusion Res. 5 S1041
    [10]
    Ding B G et al 2015 Plasma Sci. Technol. 17 797
    [11]
    Dreier H et al 2011 Rev. Sci. Instrum. 82 063509
    [12]
    Khil’chenko A D et al 2009 Instrum. Exp. Tech. 52 382
    [13]
    Akiyama T et al 2014 Rev. Sci. Instrum. 85 11D301
    [14]
    Bagryansky P A et al 2006 Rev. Sci. Instrum. 77 053501
    [15]
    Stout D F and Kaufman M 1976 Handbook of Operarional Ampli?er Circuit Design (New York: McGraw-Hill)
    [16]
    Saukoski M, Aaltonen L and Halonen K A I 2008 IEEE Sens. J. 8 1722
    [17]
    Xu X F et al 2013 Plasma Sci. Technol. 15 417
    [18]
    Ding B G et al 2015 Plasma Sci. Technol. 17 837
    [19]
    Wang H X et al 2017 Rev. Sci. Instrum. 88 103502
  • Related Articles

    [1]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [2]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [3]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [4]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [5]Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [8]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [9]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02

Catalog

    Article views (244) PDF downloads (540) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return