Advanced Search+
Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
Citation: Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc

Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes

Funds: This work is supported by National Natural Science Foundation of China (No. 21735005), the Science and Technology Program of Anhui Province (No. 1501041119), the Science and Technology Major Special Program of Anhui Province (No. 15CZZ04125), and National Key Research and Development Plan of China (No. 2016YFD0800902-2).
More Information
  • Received Date: May 17, 2018
  • The use of laser-induced breakdown spectroscopy (LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect’, hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead, and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl -1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.
  • [1]
    Wang Z et al 2014 Front. Phys. 9 419
    [2]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [3]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [4]
    Wang Y J and Yuan X Q 2013 J. Gems Gemmol. 15 18 (in Chinese)
    [5]
    Noll R et al 2001 Spectrochim. Acta B 56 637
    [6]
    Hassan H E et al 2013 J. Appl. Sci. Res. 9 1074
    [7]
    Metzinger A et al 2014 Appl. Spectrosc. 68 789
    [8]
    Giakoumaki A, Melessanaki K and Anglos D 2007 Anal. Bioanal. Chem. 387 749
    [9]
    Lazic V et al 2005 Spectrochim. Acta B 60 1014
    [10]
    Cremers D A et al 2004 LIBS analysis of geological samples at low pressures: application to Mars, the Moon, and asteroids Proc. of the 35th Lunar and Planetary Science Conf. (Houston, TX: Los Alamos National Laboratory) p 35
    [11]
    Lazic V et al 2007 Spectrochim. Acta Part B At. Spectrosc. 62 1546
    [12]
    Abdel-Salam Z, Al Sharnoubi J and Harith M A 2013 Talanta 115 422
    [13]
    Yang H et al 2017 Laser Opt. Prog. 54 083002 (in Chinese)
    [14]
    Guo Y M et al 2016 Front. Phys. 11 114212
    [15]
    Pace D M D et al 2006 Spectrochim. Acta B 61 929
    [16]
    Pace D M D et al 2017 Spectrochim. Acta B 131 58
    [17]
    Wu Y Q et al 2016 Chin. J. Anal. Chem. 44 1919 (in Chinese)
    [18]
    Xu L et al 2012 J. Anhui Norm. Univ. Nat. Sci. 35 438 (in Chinese)
    [19]
    Serrano J, Moros J and Laserna J J 2016 Phys. Chem. Chem. Phys. 18 2398
    [20]
    Cortez J and Pasquini C 2013 Anal. Chem. 85 1547
    [21]
    Yang X Y et al 2016 Opt. Express 24 13410
    [22]
    Choi D et al 2015 Appl. Spectrosc. 68 198
    [23]
    Wang X et al 2015 Anal. Chem. 87 5577
    [24]
    Cáceres J O et al 2001 Spectrochim. Acta B 56 831
    [25]
    Wang Y Y et al 2017 Spectrosc. Spect. Anal. 37 884 (in Chinese)
    [26]
    Alamelu D, Sarkar A and Aggarwal S K 2008 Talanta 77 256
    [27]
    Jiang T J et al 2016 Electrochim. Acta 216 188
    [28]
    Schmidt N E and Goode S R 2002 Appl. Spectrosc. 56 370
    [29]
    Aguirre M A et al 2015 Talanta 131 348
    [30]
    Sarkar A et al 2009 J. Anal. At. Spectrom. 24 1545
    [31]
    Sarkar A et al 2010 Microchim. Acta 168 65
    [32]
    Shi H et al 2012 Spectrosc. Spect. Anal. 32 25 (in Chinese)
    [33]
    Wang C L et al 2012 Proc. of SPIE 6th Int. Symp. on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment 8417 84171G
    [34]
    Wang C L et al 2011 Chin. J. Lasers 38 252 (in Chinese)
    [35]
    Wang Y et al 2013 Laser Technol. 37 808 (in Chinese)
    [36]
    Bae D et al 2015 Spectrochim. Acta B 113 70
    [37]
    Lin Q Y et al 2016 Anal. At. Spectrom. 31 1622
    [38]
    Andrade D F, Speran?a M A and Pereira-Filho E R 2017 Anal. Methods 9 5156
    [39]
    Guo L B et al 2016 Front. Phys. 11 115208
    [40]
    Aragón C, Aguilera J A and Pe?alba F 1999 Appl. Spectrosc. 53 1259
    [41]
    Cheng Y K et al 2017 Technol. Dev. Enterp. 36 5 (in Chinese)
    [42]
    Song C, Zhang Y W and Gao X 2017 Spectrosc. Spect. Anal. 37 1885 (in Chinese)
    [43]
    Lin Q Y et al 2017 J. Anal. At. Spectrom. 32 1412
    [44]
    Wu Q F et al 2017 Laser J. 38 21 (in Chinese)
    [45]
    Lu Y et al 2010 Appl. Opt. 49 C75
    [46]
    Zheng M L et al 2013 Laser Optoelectron. Prog. 50 073004 (in Chinese)
    [47]
    Tawfik W and Sawaf S 2014 Proc. of SPIE Sensing Technology and Applications 9101 91010L
    [48]
    Zhong S L et al 2016 Front. Phys. 11 114202
  • Related Articles

    [1]Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821
    [2]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [3]Sungho SHIN, Youngmin MOON, Jaepil LEE, Hyemin JANG, Euiseok HWANG, Sungho JEONG. Signal processing for real-time identification of similar metals by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34011-034011. DOI: 10.1088/2058-6272/aaed6c
    [4]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [5]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [6]Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
    [7]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [8]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [9]GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
    [10]NI Guohua (倪国华), ZHAO Peng (赵鹏), JIANG Yiman (江贻满), MENG Yuedong (孟月东). Vitrification of MSWI Fly Ash by Thermal Plasma Melting and Fate of Heavy Metals[J]. Plasma Science and Technology, 2012, 14(9): 813-818. DOI: 10.1088/1009-0630/14/9/08
  • Cited by

    Periodical cited type(32)

    1. Wang, Z., Li, Y., Chen, Y. et al. Duplication of periodic micro-structure on the surface of a nickel substrate and its application in surface-enhanced laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2025. DOI:10.1016/j.sab.2025.107139
    2. Wang, H., Li, H., Zhang, H. et al. A study on the improvement of Sr element stability in LIBS detection of aqueous solutions by foam titanium porous substrate. Optics and Laser Technology, 2025. DOI:10.1016/j.optlastec.2024.112064
    3. Wang, H., Li, H., Yao, Z. et al. Study on enhancing the quantitative performance of LIBS for Cu element in liquids based on the chitosan-parafilm enrichment method. Measurement Science and Technology, 2025, 36(1): 015502. DOI:10.1088/1361-6501/ad8cfa
    4. Li, Y., Chen, X., Yuan, Z. et al. Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water. Sensors, 2024, 24(17): 5745. DOI:10.3390/s24175745
    5. Goncharova, I., Guichaoua, D., Taboukhat, S. et al. Laser-induced breakdown spectroscopy application for heavy metals detection in water: A review. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106943
    6. Santini, S., Campanella, B., Giannarelli, S. et al. Optimization of carbon-based thin film microextraction supports for simultaneous detection of heavy metals using LIBS. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106948
    7. Li, Z., Zhu, D., Cao, Y. et al. Rapid and ultra-sensitive trace metals detection of water by partial Leidenfrost superhydrophobic array surface enhanced laser-induced breakdown spectroscopy. Talanta, 2024. DOI:10.1016/j.talanta.2024.125832
    8. Chen, Y., Wan, X., Si, J. et al. High-sensitivity analysis of trace elements in water using femtosecond LIBS with dry droplet pretreatment on a metallic substrate. Journal of Analytical Atomic Spectrometry, 2024, 39(5): 1225-1234. DOI:10.1039/d3ja00432e
    9. Goncharova, I., Rouquier, P., Guichaoua, D. et al. Laser-Induced Breakdown Spectroscopy as a Promising Nanotechnology for Cadmium and Chromium Detection in Aqueous Solutions. Springer Proceedings in Physics, 2024. DOI:10.1007/978-3-031-67527-0_10
    10. Zhu, Y., Liu, Y., Xiao, S. et al. Interface self-assembly of plasmonic nanolayer for sensitive detection of heavy metals in water using NELIBS. Nano Materials Science, 2024. DOI:10.1016/j.nanoms.2024.04.008
    11. Wang, Y., Li, H., Yin, X. et al. Research on water heavy metal element detection using surface-enhanced LIBS based on coffee ring enrichment. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2023.113869
    12. Xu, B., Liu, Y., Liu, Z. et al. Analysis of Trace Metal Elements in Water Based on Discharge-Assisted Laser-Induced Breakdown Spectroscopy | [基于放电辅助激光诱导击穿光谱技术的水中痕量金属元素检测分析]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38(17): 4757-4766. DOI:10.19595/j.cnki.1000-6753.tces.L10087
    13. Wang, J., Li, G., Zheng, P. et al. Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment. Chemosensors, 2023, 11(4): 228. DOI:10.3390/chemosensors11040228
    14. You, Z., Li, X., Huang, J. et al. Agarose Film-Based Liquid–Solid Conversion for Heavy Metal Detection of Water Samples by Laser-Induced Breakdown Spectroscopy. Molecules, 2023, 28(6): 2777. DOI:10.3390/molecules28062777
    15. Shuaijun, L., Xiaojian, H., Biming, M. et al. Classification of different coals using laser induced breakdown spectroscopy (LIBS) combined with PCA-CNN. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.3003983
    16. Zhu, Y., Deng, N., Hu, Z. et al. Droplet Constraint by a Superhydrophobic-Superhydrophilic Hybrid Surface with a SiO2NP Coating for Determination of Heavy Metals Using LIBS. ACS Applied Nano Materials, 2022, 5(12): 17508-17515. DOI:10.1021/acsanm.2c02816
    17. Li, N., Tang, S., Lu, M. et al. Effect of Laser Wavelength on Laser-Induced Breakdown Spectrum and Evolution of Cavitation Bubble in Bulk Water | [激光波长对水体中激光诱导击穿光谱和空化气泡演化的影响]. Guangxue Xuebao/Acta Optica Sinica, 2022, 42(18): 1801005. DOI:10.3788/AOS202242.1801005
    18. Qi, P., Qian, W., Guo, L. et al. Sensing with Femtosecond Laser Filamentation. Sensors, 2022, 22(18): 7076. DOI:10.3390/s22187076
    19. Poggialini, F., Campanella, B., Palleschi, V. et al. Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106471
    20. Ren, J., Zhao, Y., Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Computers and Electronics in Agriculture, 2022. DOI:10.1016/j.compag.2022.106986
    21. Xu, B., Liu, S., Lei, B. et al. A hybrid method combining discharge-assisted laser induced breakdown spectroscopy with wavelet transform for trace elemental analysis in liquid targets. Journal of Analytical Atomic Spectrometry, 2022, 37(6): 1350-1359. DOI:10.1039/d2ja00140c
    22. Ma, M., Fang, L., Zhao, N. et al. Simultaneous detection of heavy metals in solutions by electrodeposition assisted laser induced breakdown spectroscopy. Journal of Laser Applications, 2022, 34(1): 012021. DOI:10.2351/7.0000572
    23. Tian, H., Li, C., Jiao, L. et al. Study on rapid detection method of water heavy metals by Laser-induced breakdown spectroscopy coupled with liquid-solid conversion and morphological constraints. Proceedings of SPIE - The International Society for Optical Engineering, 2022. DOI:10.1117/12.2628538
    24. Ripoll, L., Legnaioli, S., Palleschi, V. et al. Evaluation of electrosprayed graphene oxide coatings for elemental analysis by thin film microextraction followed by LIBS detection (TFME-LIBS). Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106267
    25. Kumar, S., Ngo, V.T., Park, J. et al. Improving Analytical Performance of Laser-induced Breakdown Spectroscopy for Strontium, the Minor Impurity Element, in Salts Using Multiple Filter-Paper Sampling. Bulletin of the Korean Chemical Society, 2021, 42(5): 779-785. DOI:10.1002/bkcs.12259
    26. Kumar, S., Park, J., Nam, S.-H. et al. Laser-induced plasma generated by a 532 nm pulsed laser in bulk water: Unexpected line-intensity variation with water temperature and the possible underlying physics. Plasma Science and Technology, 2020, 22(7): 074009. DOI:10.1088/2058-6272/ab812e
    27. Jiang, M., Ma, M.-J., Yang, M. et al. Highly sensitive and stable analysis of trace arsenic(III) and mercury(II) in water by Low-pulse-energy (15 mJ) laser-induced breakdown spectroscopy assisted by active controllable spark discharge and electrochemical enrichment. Sensors and Actuators, B: Chemical, 2020. DOI:10.1016/j.snb.2019.127486
    28. Yu, Y., Zhao, N., Lan, Z. et al. Spectral characteristic of laser-induced plasma in soil. Plasma Science and Technology, 2020, 22(1): 015502. DOI:10.1088/2058-6272/ab4c6a
    29. Wang, Q., Chen, A., Qi, H. et al. Femtosecond laser-induced breakdown spectroscopy of a preheated Cu target. Optics and Laser Technology, 2020. DOI:10.1016/j.optlastec.2019.105773
    30. Tian, H., Jiao, L., Dong, D. Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment. Scientific Reports, 2019, 9(1): 10443. DOI:10.1038/s41598-019-46924-z
    31. Ripoll, L., Hidalgo, M. Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): A new method for trace elemental analysis of aqueous samples. Journal of Analytical Atomic Spectrometry, 2019, 34(10): 2016-2026. DOI:10.1039/c9ja00145j
    32. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (196) PDF downloads (247) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return