Advanced Search+
Angjian WU (吴昂键), Hang CHEN (陈航), Jiageng ZHENG (郑佳庚), Jian YANG (杨健), Xiaodong LI (李晓东), Changming DU (杜长明), Zhiliang CHEN (陈志良), Aoni XU (徐奥妮), Jie QIU (邱杰), Yi XU (徐一), Jianhua YAN (严建华). Conversion of coalbed methane surrogate into hydrogen and graphene sheets using rotating gliding arc plasma[J]. Plasma Science and Technology, 2019, 21(11): 115501. DOI: 10.1088/2058-6272/ab21a2
Citation: Angjian WU (吴昂键), Hang CHEN (陈航), Jiageng ZHENG (郑佳庚), Jian YANG (杨健), Xiaodong LI (李晓东), Changming DU (杜长明), Zhiliang CHEN (陈志良), Aoni XU (徐奥妮), Jie QIU (邱杰), Yi XU (徐一), Jianhua YAN (严建华). Conversion of coalbed methane surrogate into hydrogen and graphene sheets using rotating gliding arc plasma[J]. Plasma Science and Technology, 2019, 21(11): 115501. DOI: 10.1088/2058-6272/ab21a2

Conversion of coalbed methane surrogate into hydrogen and graphene sheets using rotating gliding arc plasma

Funds: The project was supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51621005), China Postdoctoral Science Foundation (No. 2018M630672).
More Information
  • Received Date: January 14, 2019
  • Revised Date: May 13, 2019
  • Accepted Date: May 13, 2019
  • The use of atmospheric rotating gliding arc (RGA) plasma is proposed as a facile, scalable and catalyst-free approach to synthesizing hydrogen (H2) and graphene sheets from coalbed methane (CBM). CH4 is used as a CBM surrogate. Based on a previous investigation of discharge properties, product distribution and energy efficiency, the operating parameters such as CH4 concentration, applied voltage and gas flow rate can effectively affect the CH4 conversion rate, the selectivity of H2 and the properties of solid generated carbon. Nevertheless, the basic properties of RGA plasma and its role in CH4 conversion are scarcely mentioned. In the present work, a 3D RGA model, with a detailed nonequilibrium CH4/Ar plasma chemistry, is developed to validate the previous experiments on CBM conversion, aiming in particular at the distribution of H2 and other gas products. Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection, electron migration and electron diffusion, and is prominently determined by the variation of the gas flow rate and applied voltage. Subsequently, a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction, taking into consideration the formation and loss pathways of crucial targeted substances (such as CH4, C2H2, H2 and H radicals) and corresponding contribution rates. Additionally, the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The results show that increasing the applied voltage and decreasing CH4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets, while the size of the graphene sheets is slightly affected by the change in gas flow rate.
  • [1]
    Ritter D et al 2015 Int. J. Coal Geol. 146 28
    [2]
    Mu F Y et al 2015 Nat. Gas Indus. B 2 383
    [3]
    Moore T A 2012 Int. J. Coal Geol. 101 36
    [4]
    Wu A J et al 2017 Appl. Energy 195 67
    [5]
    Wu J H, Fang Y T and Wang Y 2005 Energy Fuels 19 512
    [6]
    Wei L et al 2016 Fuel 183 345
    [7]
    Wu A J et al 2017 RSC Adv. 7 9303
    [8]
    Yu L et al 2010 J. Hazard. Mater. 180 449
    [9]
    Wang W Z et al 2017 Chem. Eng. J. 330 11
    [10]
    Wu A J et al 2014 Int. J. Hydrogen Energy 39 17656
    [11]
    Fridman A et al 1999 Prog. Energy Combust. Sci. 25 211
    [12]
    Gutsol A, Rabinovich A and Fridman A 2011 J. Phys. D: Appl.Phys. 44 274001
    [13]
    Wu A J et al 2015 IEEE Trans. Plasma Sci. 43 836
    [14]
    Richard F et al 1996 J. Appl. Phys. 79 2245
    [15]
    Trenchev G, Kolev S and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 035014
    [16]
    Kolev S and Bogaerts A 2015 Plasma Source Sci. Technol. 24 015025
    [17]
    Yang Y 2003 Plasma Chem. Plamsa Process. 23 327
    [18]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [19]
    Garduño M et al 2012 J. Renew. Sustain. Energy 4 021202
    [20]
    Zhang H et al 2018 Chem. Eng. J. 345 67
    [21]
    Zhang H et al 2014 Int. J. Hydrogen Energy 39 12620
    [22]
    Bundaleska N et al 2018 Phys. Chem. Chem. Phys. 20 13810
    [23]
    Zheng J et al 2010 Adv. Mater. 22 1451
    [24]
    Liu C et al 1999 Carbon 37 1865
    [25]
    Sun D L 2016 Preparation and modification of carbon materials musing plasma methods PhD Soochow University, Soochow China (in Chinese)
    [26]
    Fridman A and Kennedy L A 2011 Plasma Physics and Engineering 2nd ed (Boca Raton, FL: CRC Press)
    [27]
    Wang G 2015 Experimental and kinetic modeling study of n-pentanol pyrolysis and combustion MSc University of Science and Technology of China, Hefei China (in Chinese)
  • Related Articles

    [1]Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1
    [2]Jian YANG (杨健), Ruiyang XU (许睿飏), Angjian WU (吴昂键), Xiaodong LI (李晓东), Li LI (李澧), Wangjun SHEN (沈望俊), Jianhua YAN (严建华). Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(12): 125503. DOI: 10.1088/2058-6272/aacda4
    [3]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [4]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [5]ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05
    [6]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [7]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [8]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [9]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
    [10]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11
  • Cited by

    Periodical cited type(11)

    1. Shavelkina, M.B., Filimonova, E.A., Ivanov, P.P. et al. The role of gas-phase chemistry in plasma jets in design of graphene flakes. Journal of Physics D: Applied Physics, 2025, 58(14): 145303. DOI:10.1088/1361-6463/adb3b5
    2. Saadiah, M.A., Shaafi, N.F., Muzakir, S.K. et al. Functionalization of carbon and graphene quantum dots. Quantum Dots: Emerging Materials for Versatile Applications, 2023. DOI:10.1016/B978-0-323-85278-4.00002-7
    3. Zhou, R., Zhao, Y., Zhou, R. et al. Plasma-electrified up-carbonization for low-carbon clean energy. Carbon Energy, 2023, 5(1): e260. DOI:10.1002/cey2.260
    4. Matus, Е.V., Ismagilov, I.Z., Mikhaylova, E.S. et al. Hydrogen Production from Coal Industry Methane. Eurasian Chemico-Technological Journal, 2022, 24(2): 69-91. DOI:10.18321/ectj1320
    5. Zong, L., Chen, X., Chen, T. et al. Effect of Pulse Polarity and Dielectric Configuration on the Spatio-Temporal Evolution Characteristics of Methane Pulsed Dielectric Barrier Discharge Plasma. 2022. DOI:10.1109/CIEEC54735.2022.9846262
    6. Fortugno, P., Musikhin, S., Shi, X. et al. Synthesis of freestanding few-layer graphene in microwave plasma: The role of oxygen. Carbon, 2022. DOI:10.1016/j.carbon.2021.10.047
    7. Liu, Y., Zhang, S., Huang, B. et al. Temporal evolution of electron energy distribution function and its correlation with hydrogen radical generation in atmospheric-pressure methane needle-plane discharge plasmas. Journal of Physics D: Applied Physics, 2021, 54(9): 095202. DOI:10.1088/1361-6463/abca61
    8. Wang, C., Lu, Z., Ma, J. et al. Pressure-dependent synthesis of graphene nanoflakes using Ar/H2/CH4 non-thermal plasma based on rotating arc discharge. Diamond and Related Materials, 2021. DOI:10.1016/j.diamond.2020.108176
    9. Ma, X., Li, S., Chaudhary, R. et al. Carbon Nanosheets Synthesis in a Gliding Arc Reactor: On the Reaction Routes and Process Parameters. Plasma Chemistry and Plasma Processing, 2021, 41(1): 191-209. DOI:10.1007/s11090-020-10120-z
    10. Wang, C., Li, D., Lu, Z. et al. Synthesis of carbon nanoparticles in a non-thermal plasma process. Chemical Engineering Science, 2020. DOI:10.1016/j.ces.2020.115921
    11. Li, D., Wang, C., Lu, Z. et al. Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28(10): 846-856. DOI:10.1080/1536383X.2020.1774559

    Other cited types(0)

Catalog

    Article views (208) PDF downloads (227) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return