Advanced Search+
Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
Citation: Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6

Microwave frequency downshift in the time-varying collision plasma

Funds: The project is supported by National Natural Science Foundation of China (Nos. 51677145, 11622542 and U1537210).
More Information
  • Received Date: September 21, 2019
  • Revised Date: October 21, 2019
  • Accepted Date: October 23, 2019
  • Microwave frequency downshift in the time-varying collision plasma has been demonstrated by particle-in-cell simulations. The simulation results are consistent with the theoretical analysis, and the preconditions for microwave frequency downshift are that the collision frequency needs to be greater than the incident wave frequency, and the plasma frequency is two times greater than the incident wave frequency. Finally, the simulation results are compared with the reported experimental results indicating good agreement.
  • [1]
    Budden K G 1985 The Propagation of Radio Waves (Cambridge: Cambridge University Press)
    [2]
    Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (Oxford: Pergamon)
    [3]
    Hambling D 2000 Plasma stealth New Sci. 168 60–1
    [4]
    Chaudhury B and Chaturvedi S 2005 IEEE Trans. Plasma Sci.33 2027
    [5]
    Chen W, Guo L X and Li J T 2017 Phys. Plasmas 24 042102
    [6]
    Singh H, Antony S and Jha R M 2016 Plasma-based Radar Cross Section Reduction (Berlin: Springer)
    [7]
    Xu J et al 2017 IEEE Trans. Plasma Sci. 45 938
    [8]
    Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp.Electron. Syst. AES-7 879
    [9]
    Morris R A et al 1999 Characterization and prediction of hypersonic plasma effects Proc. 37th Aerospace Sciences Meeting and Exhibit (Reston, VA: AIAA) 1999–0630
    [10]
    Falempin F and Serre L 2008 The French LEA flight test program—status in 2008 Proc. 15th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf. (Reston,VA: AIAA) 2008–541
    [11]
    Yang M et al 2013 Phys. Plasmas 20 012101
    [12]
    Lei F et al 2017 Phys. Plasmas 24 043513
    [13]
    Chang C et al 2018 Phys. Plasmas 25 060701
    [14]
    Zhou Q H and Dong Z W 2011 Appl. Phys. Lett. 98 161504
    [15]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [16]
    Meneghini O et al 2015 Nucl. Fusion 55 083008
    [17]
    Lancellotti V et al 2006 Nucl. Fusion 46 S476
    [18]
    Torrisi G et al 2019 IEEE Trans. Antennas Propag. 67 2142
    [19]
    Kalluri D K 2010 Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer 2nd edn (Boca Raton, FL: CRC Press)
    [20]
    Kalluri D K and Lade R K 2012 IEEE Trans. Plasma Sci.40 3070
    [21]
    Chen K et al 2017 Phys. Plasmas 24 033507
    [22]
    Chen K et al 2019 Plasma Sci. Technol. 21 105501
    [23]
    Kuo S P and Ren A 1992 J. Appl. Phys. 71 5376
    [24]
    Nishida A et al 2012 Rev. Sci. Instrum. 83 045104
    [25]
    Nishida A et al 2012 Appl. Phys. Lett. 101 161118
    [26]
    Kuo S P, Ren A and Schmidt G 1994 Phys. Rev. E 49 3310
    [27]
    Kuo S P and Faith J 1997 Phys. Rev. E 56 2143
    [28]
    Faith J, Kuo S P and Huang J 1997 Phys. Rev. E 55 1843
    [29]
    Bakunov M I, Gildenburg V B and Zhukov S N 2000 Phys.Plasmas 7 1035
    [30]
    Li Y D, He F and Liu C L 2005 Plasma Sci. Technol. 7 2653
    [31]
    Li Y D et al 2009 High Power Laser Part. Beams 21 1866 (in Chinese)
    [32]
    Potter D L 2006 Introduction of the PIRATE program for parametric reentry vehicle plasma effects studies Proc. 37th AIAA Plasmadynamics and Lasers Conf. (Reston, VA:AIAA) 2006–3239
    [33]
    Lin T C et al 1995 Reentry plasma effects on electromagnetic wave propagation Proc. 26th Plasmadynamics and Lasers Conf. (Reston, VA: AIAA) 1995–1942
  • Related Articles

    [1]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [2]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [3]Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [7]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [8]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15
  • Cited by

    Periodical cited type(2)

    1. Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499
    2. Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690

    Other cited types(0)

Catalog

    Article views (122) PDF downloads (64) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return