
Citation: | Guangyu SUN, Shu ZHANG, Anbang SUN, Guanjun ZHANG. On the electron sheath theory and its applications in plasma–surface interactions[J]. Plasma Science and Technology, 2022, 24(9): 095401. DOI: 10.1088/2058-6272/ac6aa7 |
In this work, an improved understanding of electron sheath theory is provided using both fluid and kinetic approaches while elaborating on their implications for plasma–surface interactions. A fluid model is proposed considering the electron presheath structure, avoiding the singularity in electron sheath Child–Langmuir law which overestimates the sheath potential. Subsequently, a kinetic model of electron sheath is established, showing considerably different sheath profiles in respect to the fluid model due to non-Maxwellian electron velocity distribution function and finite ion temperature. The kinetic model is then further generalized and involves a more realistic truncated ion velocity distribution function. It is demonstrated that such a distribution function yields a super-thermal electron sheath whose entering velocity at the sheath edge is greater than the Bohm criterion prediction. Furthermore, an attempt is made to describe the electron presheath–sheath coupling within the kinetic framework, showing a necessary compromise between a realistic sheath entrance and the inclusion of kinetic effects. Finally, the secondary electron emissions induced by sheath-accelerated plasma electrons in an electron sheath are analysed and the influence of backscattering is discussed.
The influence of the isotope mass on plasma confinement properties has been a longstanding issue in magnetically confined plasmas. According to gyro-Bohm scaling [1, 2], the plasma transport diffusivity scales as
The first experimental observation in the TEXTOR tokamak has demonstrated that the amplitude of geodesic acoustic mode (GAM) zonal flows substantially increases during the transition from H to D dominated plasmas [9], which is qualitatively consistent with the GKV simulation [17]. However, up to date, there has been little evidence showing the increase of nonlinear interplay between ambient turbulence and zonal flows in heavier mass isotope plasmas.
In this paper, we present direct experimental evidence to expose the fact that in D majority plasmas, the nonlinear energy transfer plays a dominant role in exciting larger GAM zonal flows by extracting more energy from ambient turbulence, which results in lower turbulent transport and better confinement compared to H majority plasmas. The results provide additional proof for understanding the isotope effects in fusion plasmas.
The experiments were carried out in the Ohmically-heated H and D plasmas at the HL-2A tokamak with a limiter configuration. The major and minor radii are R = 165 cm and a = 40 cm, respectively, line-averaged plasma density
Typical discharge waveforms in H and D dominant plasmas are plotted in figure 1. It can be seen that with the same plasma current, loop voltage and line-averaged density, the plasma stored energy in D majority plasmas is higher than that in H ones, similar to those observed in other devices [4, 5, 7, 8, 10–12, 16]. Figure 1(e) shows time traces of the reciprocating Langmuir probes plunged in the stationary phase of the H and D discharges. The probe measurement in both discharges passed through approximately the same radial locations. It has been confirmed that the plasma horizontal position kept almost unchanged as the probes plunged into the plasma. Figure 2 depicts the edge equilibrium profiles averaged in several similar H (black) and D (red) majority discharges. Here, the ∆r = 0 denotes the LCFS location. As shown in figures 2(a) and (b), the local ne and Te in the edge region (inside the LCFS, ∆r < 0) are both enhanced in D plasmas, suggesting a higher edge pressure gradient, in agreement with higher stored energy achieved in the D plasma (see figure 1(d)). Inside the LCFS, both Vf and Vp are substantially lower in D plasmas than in H ones, leading to a slightly deeper Er well and larger Er shear (
In order to gain an insight into the isotope effects on turbulence levels and associated transport, we compared the RMS values of density, electron temperature and radial velocity fluctuations,
To understand the mechanisms responsible for the reduction of turbulent transport in the isotope deuterium plasmas, we analyzed the spectrum characteristics of edge turbulence and zonal flows in H and D plasmas. In HL-2A, a low frequency coherent mode with long-range toroidal correlations, namely GAM zonal flows, has been routinely observed in floating potential signals [32, 33]. Theories predict that the GAM zonal flow has poloidally symmetric (m/n = 0/0) potential and asymmetric (m/n = 1/0) density perturbations [34, 35]. In the present experiments, it is found that the maximum GAM amplitude presents at ∆r ≈ -3 cm inside the LCFS [36]. Plotted in figure 4 are the frequency spectra of floating potential (
According to theories [34, 35], the GAM frequency
To further compare the strength of the nonlinear coupling in turbulence between H and D plasmas, the squared auto-bicoherence [38], defined as b2(f1, f2) = |B(f1, f2)|2/(〈|X(f1)X(f2)|2〉〈|X(f1 ± f2)|2〉), where B(f1, f2) = 〈X(f1)X(f2)X*(f1 ± f2)〉 and X(f) is the Fourier transform of the fluctuation signal x(t), has been computed. Figures 6(a) and (b) show contour-plots of the squared auto-bicoherence estimated by floating potential fluctuation signals measured at ∆r ≈ - 3 cm in D and H dominant plasmas. It is clear that the bicoherence along the f2 = ±10 kHz and f2 = - f1 ± 10 kHz lines are much more prominent in D plasmas than that in H ones. This comparison illustrates stronger nonlinear coupling occurred between GAM zonal flows and turbulence in D plasmas. The summation of the squared bicoherence is calculated as
In summary, the isotope effects on plasma confinement, edge turbulence and turbulent transport as well as GAM zonal flows have been studied using a two-step Langmuir probe array in H and D majority plasmas in the HL-2A tokamak. Evidence shows that under similar discharge parameters the D plasma has better confinement and lower turbulent transport than the H plasma. Meanwhile, it is observed that the magnitude of GAM zonal flows, the tilting angle of the Reynolds stress tensor, and the turbulence correlation lengths are all larger in the edge region of the D plasma. The results provide direct experimental proof on the importance of the nonlinear energy transfer between turbulence and zonal flows for governing the isotope effects in fusion plasmas.
The research was conducted under the auspices of National Natural Science Foundation of China (Nos. 51827809, 52077169) and the National Key R&D Program of China (No. 2020YFC2201100).
[1] |
Buchenauer D et al 1995 Rev. Sci. Instrum. 66 827 doi: 10.1063/1.1146236
|
[2] |
Li H L and Sun A B 2021 Comput. Phys. Commun. 259 107629 doi: 10.1016/j.cpc.2020.107629
|
[3] |
Das G C, Deka R and Bora M P 2016 Phys. Plasmas 23 042308 doi: 10.1063/1.4946865
|
[4] |
Février O et al 2018 Rev. Sci. Instrum. 89 053502 doi: 10.1063/1.5022459
|
[5] |
Robertson S 2013 Plasma Phys. Control. Fusion 55 093001 doi: 10.1088/0741-3335/55/9/093001
|
[6] |
Han J et al 2020 Phys. Plasmas 27 063509 doi: 10.1063/5.0007288
|
[7] |
Zhou X Y et al 2021 Plasma Sci. Technol. 23 064003 doi: 10.1088/2058-6272/abea72
|
[8] |
Zhao K et al 2021 Plasma Sci. Technol. 23 115404 doi: 10.1088/2058-6272/ac1cce
|
[9] |
Ding Z et al 2021 Plasma Sci. Technol. 23 095403 doi: 10.1088/2058-6272/ac125d
|
[10] |
Hershkowitz N 2005 Phys. Plasmas 12 055502 doi: 10.1063/1.1887189
|
[11] |
Jin C et al 2022 Plasma Sci. Technol. 24 025404 doi: 10.1088/2058-6272/ac41c0
|
[12] |
Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309 doi: 10.1088/0022-3727/36/22/R01
|
[13] |
Baalrud S D, Hershkowitz N and Longmier B 2007 Phys. Plasmas 14 042109 doi: 10.1063/1.2722262
|
[14] |
Richards B et al 1994 Phys. Plasmas 1 1606 doi: 10.1063/1.870661
|
[15] |
Law D A et al 1998 Phys. Rev. Lett. 80 4189 doi: 10.1103/PhysRevLett.80.4189
|
[16] |
Singh N and Jaggernauth A 1996 J. Geophys. Res. 101 17229 doi: 10.1029/96JA00925
|
[17] |
Fetterman A J, Raitses Y and Keidar M 2008 Carbon 46 1322 doi: 10.1016/j.carbon.2008.05.018
|
[18] |
Medicus G 1961 J. Appl. Phys. 32 2512 doi: 10.1063/1.1728342
|
[19] |
Yee B T et al 2017 Plasma Sources Sci. Technol. 26 025009 doi: 10.1088/1361-6595/aa56d7
|
[20] |
Scheiner B et al 2015 Phys. Plasmas 22 123520 doi: 10.1063/1.4939024
|
[21] |
Stenzel R L et al 2011 Phys. Plasmas 18 062113 doi: 10.1063/1.3601860
|
[22] |
Stenzel R L et al 2011 Phys. Plasmas 18 062112 doi: 10.1063/1.3601858
|
[23] |
Scheiner B et al 2016 Phys. Plasmas 23 083510 doi: 10.1063/1.4960382
|
[24] |
Hood R et al 2016 Phys. Plasmas 23 113503 doi: 10.1063/1.4967870
|
[25] |
Takamura S et al 2004 Contrib. Plasma Phys. 44 126 doi: 10.1002/ctpp.200410017
|
[26] |
Baalrud S D et al 2020 Plasma Sources Sci. Technol. 29 053001 doi: 10.1088/1361-6595/ab8177
|
[27] |
Lafleur T 2021 Plasma Sources Sci. Technol. 30 055018 doi: 10.1088/1361-6595/abfbed
|
[28] |
Chen X C et al 2021 Plasma Sources Sci. Technol. 30 065002 doi: 10.1088/1361-6595/abe612
|
[29] |
Loizu J et al 2012 Phys. Plasmas 19 083507 doi: 10.1063/1.4745863
|
[30] |
Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493 doi: 10.1088/0022-3727/24/4/001
|
[31] |
Kaganovich I D et al 2007 Phys. Plasmas 14 057104 doi: 10.1063/1.2709865
|
[32] |
Sheehan J P et al 2014 Phys. Plasmas 21 063502 doi: 10.1063/1.4882260
|
[33] |
Sheehan J P et al 2013 Phys. Rev. Lett. 111 075002 doi: 10.1103/PhysRevLett.111.075002
|
[34] |
Sun G Y et al 2019 Plasma Sources Sci. Technol. 28 055001 doi: 10.1088/1361-6595/ab17a3
|
[35] |
Loizu J, Ricci P and Theiler C 2011 Phys. Rev. E 83 016406 doi: 10.1103/PhysRevE.83.016406
|
[36] |
Stangeby P C 2000 Plasma Phys. Control. Fusion 42 B271 doi: 10.1088/0741-3335/42/12B/321
|
[37] |
Moritz J et al 2021 Phys. Plasmas 28 083501 doi: 10.1063/5.0055790
|
[38] |
Faudot E et al 2013 Phys. Plasmas 20 043514 doi: 10.1063/1.4802190
|
[39] |
Langendorf S and Walker M 2015 Phys. Plasmas 22 033515 doi: 10.1063/1.4914854
|
[40] |
Sun G Y, Sun A B and Zhang G J 2020 Phys. Rev. E 101 033203 doi: 10.1103/PhysRevE.101.033203
|
[41] |
Uhm H S, Choi E H and Cho G S 2009 Appl. Phys. Lett. 94 031501 doi: 10.1063/1.3073983
|
[42] |
Rösler M and Brauer W 1981 Phys. Status Solidi 104 161 doi: 10.1002/pssb.2221040117
|
[43] |
Zhang S et al 2021 Plasma Sources Sci. Technol. 30 055007 doi: 10.1088/1361-6595/abf321
|
[44] |
Sun G Y et al 2019 Plasma Process. Polym. 16 1900093 doi: 10.1002/ppap.201900093
|
[45] |
Sun J Y et al 2019 Phys. Plasmas 26 063505 doi: 10.1063/1.5094100
|
[46] |
Campanell M D 2013 Phys. Rev. E 88 033103 doi: 10.1103/PhysRevE.88.033103
|
[47] |
Qing S W and Hu Z 2017 AIP Adv. 7 085220 doi: 10.1063/1.5000507
|
[48] |
Tolias P et al 2020 Nucl. Mater. Energy 25 100818 doi: 10.1016/j.nme.2020.100818
|
[49] |
Dove A et al 2012 Phys. Plasmas 19 043502 doi: 10.1063/1.3700170
|
[50] |
Schwarz S A 1990 J. Appl. Phys. 68 2382 doi: 10.1063/1.346496
|
[51] |
Furman M A and Pivi M T F 2002 Phys. Rev. ST Accel. Beams 5 124404 doi: 10.1103/PhysRevSTAB.5.124404
|
[52] |
Oyarzabal E, Martin-Rojo A B and Tabarés F L 2014 J. Nucl. Mater. 452 37 doi: 10.1016/j.jnucmat.2014.04.046
|
[53] |
Song B P et al 2016 Appl. Surf. Sci. 390 346 doi: 10.1016/j.apsusc.2016.07.179
|
[54] |
Demidov V I et al 2015 Phys. Plasmas 22 104501 doi: 10.1063/1.4933002
|
[55] |
Zhou R D et al 2019 J. Phys. D: Appl. Phys. 52 375304 doi: 10.1088/1361-6463/ab2583
|
[56] |
Cimino R et al 2004 Phys. Rev. Lett. 93 014801 doi: 10.1103/PhysRevLett.93.014801
|
[57] |
Vaughan R M 1993 IEEE Trans. Electron Dev. 40 830 doi: 10.1109/16.202798
|
[1] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[2] | Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821 |
[3] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[4] | Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede |
[5] | Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1 |
[6] | Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d |
[7] | Yuqing XIONG (熊玉卿), Hengjiao GAO (高恒蛟), Ni REN (任妮), Zhongwei LIU(刘忠伟). Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides[J]. Plasma Science and Technology, 2018, 20(3): 35507-035507. DOI: 10.1088/2058-6272/aa9cdf |
[8] | Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce |
[9] | ZHU Dehua (朱德华), CAO Yu (曹宇), ZHONG Rong (钟蓉), CHEN Xiaojing (陈孝敬). Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing[J]. Plasma Science and Technology, 2015, 17(11): 909-913. DOI: 10.1088/1009-0630/17/11/03 |
[10] | MAO Yangwu(毛样武), GUO Beibei(郭贝贝), NIE Dunwei(聂敦伟), Domenico MOMBELLO. Tarnish Testing of Copper-Based Alloys Coated with SiO 2 -Like Films by PECVD[J]. Plasma Science and Technology, 2014, 16(5): 486-490. DOI: 10.1088/1009-0630/16/5/08 |
1. | Qin, C., Huang, J., Li, M.-S. The isotope effect on ion temperature gradient mode in CFQS | [CFQS 中离子温度梯度模的同位素效应研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(3): 359-366. DOI:10.16568/j.0254-6086.202403017 | |
2. | Zhou, H., Xu, Y., Kobayashi, M. et al. Isotope effects on transport characteristics of edge and core plasmas heated by neutral beam injection (NBI) in an inward shifted configuration at the Large Helical Device. Nuclear Fusion, 2024, 64(3): 036023. DOI:10.1088/1741-4326/ad22f6 |