Citation: | Haojie MA, Huasheng XIE, Bo LI. Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations[J]. Plasma Science and Technology, 2024, 26(2): 025105. DOI: 10.1088/2058-6272/ad0d53 |
This study investigates the single-pass absorption (SPA) of ion cyclotron range of frequency (ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak, which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field. The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code, and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation. Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies. The results indicate that with the design parameters of the EXL-50U device, the SPA for second harmonic heating is 63%, while the SPA for fundamental heating is 13%. Additionally, the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T. The wave vector of the antenna parallel to the magnetic field, with a value of k‖, falls within the optimal heating region. Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.
[1] |
Peng Y K M 2000 Phys. Plasmas 7 1681 doi: 10.1063/1.874048
|
[2] |
Sabbagh S A et al 2013 Nucl. Fusion 53 104007 doi: 10.1088/0029-5515/53/10/104007
|
[3] |
Chapman I T et al 2015 Nucl. Fusion 55 104008 doi: 10.1088/0029-5515/55/10/104008
|
[4] |
Ishida A, Peng Y K M and Liu W J 2021 Phys. Plasmas 28 032503 doi: 10.1063/5.0027718
|
[5] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[6] |
Xie H S et al 2022 ENN Roadmap for Proton-Boron Fusion Energy Based on Spherical Torus In: The 21st International Spherical Torus Workshop Beijing: Tsinghua University 2022.
|
[7] |
Takase Y et al 2022 Nucl. Fusion 62 042011 doi: 10.1088/1741-4326/ac29cf
|
[8] |
Shcherbinin O N et al 2006 Nucl. Fusion 46 S592 doi: 10.1088/0029-5515/46/8/S04
|
[9] |
Schneider M et al 2017 EPJ Web of Conf. 157 03046 doi: 10.1051/epjconf/201715703046
|
[10] |
Kazakov Y O et al 2021 Phys. Plasmas 28 020501 doi: 10.1063/5.0021818
|
[11] |
Zhu G H et al 2023 Nucl. Fusion 63 056015 doi: 10.1088/1741-4326/acc4db
|
[12] |
Zhang X J et al 2022 Nucl. Fusion 62 086038 doi: 10.1088/1741-4326/ac7657
|
[13] |
Zhang J H et al 2023 Nucl. Fusion 63 046012 doi: 10.1088/1741-4326/acb607
|
[14] |
Porkolab M 1994 AIP Conf. Proc. 314 99 doi: 10.1063/1.46754
|
[15] |
Porkolab M et al 1998 Plasma Phys. Control. Fusion 40 A35 doi: 10.1088/0741-3335/40/8A/004
|
[16] |
Pinsker R I et al 2006 Nucl. Fusion 46 S416 doi: 10.1088/0029-5515/46/7/S04
|
[17] |
Lu L F et al 2023 Nucl. Fusion 63 066023 doi: 10.1088/1741-4326/acc4dc
|
[18] |
Lin Y, Wright J C and Wukitch S J 2020 J. Plasma Phys. 86 865860506 doi: 10.1017/S0022377820001269
|
[19] |
Lin Y et al 2020 AIP Conf. Proc. 2254 030003
|
[20] |
Xie H S, Ma H J and Bai Y K 2021 arXiv 2111.05669
|
[21] |
Van Eester D et al 2012 Plasma Phys. Control. Fusion 54 074009 doi: 10.1088/0741-3335/54/7/074009
|
[22] |
Mayoral M L et al 2006 Nucl. Fusion 46 S550 doi: 10.1088/0029-5515/46/7/S14
|
[23] |
Stix T H 1975 Nucl. Fusion 15 737 doi: 10.1088/0029-5515/15/5/003
|
[24] |
Kazakov Y O and Fülöp T 2013 Phys. Rev. Lett. 111 125002 doi: 10.1103/PhysRevLett.111.125002
|
[25] |
Sauter O and Vaclavik J 1994 Comput. Phys. Commun. 84 226 doi: 10.1016/0010-4655(94)90213-5
|
[26] |
Zhang J H et al 2022 Nucl. Fusion 62 076032 doi: 10.1088/1741-4326/ac5451
|
[27] |
Jaeger E F et al 2002 Phys. Plasmas 9 1873 doi: 10.1063/1.1455001
|
[28] |
Jaun A et al 1998 Phys. Plasmas 5 3801 doi: 10.1063/1.873064
|
[29] |
Cai J Q et al 2022 Fusion Sci. Technol. 78 149 doi: 10.1080/15361055.2021.1964309
|
[30] |
Xie H S et al 2022 Comput. Phys. Commun. 276 108363 doi: 10.1016/j.cpc.2022.108363
|
[31] |
Ma H J et al 2023 Phys. Plasmas 30 042502 doi: 10.1063/5.0133133
|
[32] |
Onchi T et al 2021 Phys. Plasmas 28 022505 doi: 10.1063/5.0031357
|
[1] | B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce |
[2] | Weiwei XU (徐卫卫), Xiuling ZHANG (张秀玲), Mengyue DONG (董梦悦), Jing ZHAO (赵静), Lanbo DI (底兰波). Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane[J]. Plasma Science and Technology, 2019, 21(4): 44004-044004. DOI: 10.1088/2058-6272/aaf9d2 |
[3] | Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c |
[4] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[5] | Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced |
[6] | CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12 |
[7] | FU Tingjun(付廷俊), HUANG Chengdu(黄承都), LV Jing(吕静), LI Zhenhua(李振花). Fischer-Tropsch Performance of an SiO 2 -Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(3): 232-238. DOI: 10.1088/1009-0630/16/3/11 |
[8] | HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13 |
[9] | N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07 |
[10] | Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691. |