Citation: | Wei XIE, Yunfeng LIANG, Zhonghe JIANG, Yasuhiro SUZUKI, Li LI, Jiankun HUA, Jie HUANG, Alexander KNIEPS, Song ZHOU, Feiyue MAO, Xin XU, Keze LI, Yutong YANG, Ziyang JIN, Cunkai LI, the J-TEXT Team. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT[J]. Plasma Science and Technology, 2024, 26(11): 115104. DOI: 10.1088/2058-6272/ad70e1 |
Three-dimensional (3D) equilibrium calculations, including the plasma rotation shielding effect to resonant magnetic perturbations (RMPs) produced by the island divertor (ID) coils, were carried out using the HINT and MARS-F codes on J-TEXT. Validation of 3D equilibrium calculations with experimental observations demonstrates that the shielding effect will prevent the penetration of the edge m/n = 3/1 mode component when the ID coil current is 4 kA, while change the size of magnetic islands once the current exceeds the penetration threshold. This indicates that equilibrium calculations including the plasma rotation shielding effect to RMPs can lead to better agreements with experimental observations compared to the vacuum approximation method. Additionally, the magnetic topology at the boundary undergoes changes, impacting the interaction between the plasma and the target plate. These results may be important in understanding RMP effects on edge transport and magnetohydrodynamic (MHD) instability control, as well as divertor heat and particle flux distribution control.
The authors are very grateful for the help of J-TEXT team. This work was supported by the National Magnetic Confinement Fusion Energy R & D Program of China (No. 2018YFE0309101) and National Natural Science Foundation of China (Nos. 12305243 and 51821005).
[1] |
Liang Y F 2021 Leveraging 3D magnetic topologies in support of long-pulse high performance plasma operation In: 28th IAEA Fusion Energy Conference FEC (Virtual Event 10–15 May 2021
|
[2] |
Wang H et al 2021 Plasma Sci. Technol. 23 125103 doi: 10.1088/2058-6272/ac224a
|
[3] |
Colin C et al 2015 J. Nucl. Mater. 463 654 doi: 10.1016/j.jnucmat.2015.01.019
|
[4] |
Schmitz O et al 2008 Plasma Phys. Control. Fusion 50 124029 doi: 10.1088/0741-3335/50/12/124029
|
[5] |
Schmitz O et al 2011 J. Nucl. Mater. 415 S886 doi: 10.1016/j.jnucmat.2011.01.136
|
[6] |
Ahn J W et al 2017 Plasma Phys. Control. Fusion 59 084002 doi: 10.1088/1361-6587/aa73ea
|
[7] |
Liang Y et al 2013 Phys. Rev. Lett. 110 235002 doi: 10.1103/PhysRevLett.110.235002
|
[8] |
Ghendrih P et al 2003 Nucl. Fusion 43 1013 doi: 10.1088/0029-5515/43/10/001
|
[9] |
Xu S et al 2018 Nucl. Fusion 58 106008 doi: 10.1088/1741-4326/aad296
|
[10] |
Zhou S et al 2022 Nucl. Fusion 62 106002 doi: 10.1088/1741-4326/ac8439
|
[11] |
Kobayashi M et al 2019 Nucl. Fusion 59 126003 doi: 10.1088/1741-4326/ab3d14
|
[12] |
Kim K et al 2017 Phys. Plasmas 24 062302 doi: 10.1063/1.4984991
|
[13] |
Bader A et al 2013 Nucl. Fusion 53 113036 doi: 10.1088/0029-5515/53/11/113036
|
[14] |
Pandya S N et al 2016 Nucl. Fusion 56 046002 doi: 10.1088/0029-5515/56/4/046002
|
[15] |
Liu Y Q, Kirk A and Nardon E 2010 Phys. Plasmas 17 122502 doi: 10.1063/1.3526677
|
[16] |
Park J K, Boozer A H and Glasser A H 2007 Phys. Plasmas 14 052110 doi: 10.1063/1.2732170
|
[17] |
Hoelzl M et al 2021 Nucl. Fusion 61 065001 doi: 10.1088/1741-4326/abf99f
|
[18] |
Krebs I et al 2020 Phys. Plasmas 27 022505 doi: 10.1063/1.5127664
|
[19] |
Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008 doi: 10.1088/1361-6587/aa5adc
|
[20] |
Ma Q et al 2023 Phys. Plasmas 30 122507 doi: 10.1063/5.0170003
|
[21] |
Frerichs H et al 2023 Nucl. Mater. Energy 34 101380 doi: 10.1016/j.nme.2023.101380
|
[22] |
Wang X et al 2023 Nucl. Fusion 63 096023 doi: 10.1088/1741-4326/aceb77
|
[23] |
Izzo V A et al 2022 Nucl. Fusion 62 096029 doi: 10.1088/1741-4326/ac83d8
|
[24] |
Suzuki Y and Geiger J 2016 Plasma Phys. Control. Fusion 58 064004 doi: 10.1088/0741-3335/58/6/064004
|
[25] |
Nardon E et al 2010 Nucl. Fusion 50 034002 doi: 10.1088/0029-5515/50/3/034002
|
[26] |
Ferraro N M et al 2012 Phys. Plasmas 19 056105 doi: 10.1063/1.3694657
|
[27] |
Hu Q et al 2020 Nucl. Fusion 60 076006 doi: 10.1088/1741-4326/ab8b79
|
[28] |
Ye C et al 2024 Nucl. Fusion 64 016005 doi: 10.1088/1741-4326/ad0982
|
[29] |
Hirshman S P and Whitson J C 1983 Phys. Fluids 26 3553 doi: 10.1063/1.864116
|
[30] |
Wingen A et al 2015 Plasma Phys. Control. Fusion 57 104006 doi: 10.1088/0741-3335/57/10/104006
|
[31] |
Liu Y Q et al 2011 Nucl. Fusion 51 083002 doi: 10.1088/0029-5515/51/8/083002
|
[32] |
Wang Z S et al 2021 Plasma Sci. Technol. 23 085104 doi: 10.1088/2058-6272/ac0492
|
[33] |
Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
|
[34] |
Li C K et al 2024 Plasma Sci. Technol. 26 025101 doi: 10.1088/2058-6272/ad0c1e
|
[35] |
Liang Y F et al 2022 Plasma Sci. Technol. 24 124021 doi: 10.1088/2058-6272/acaa8d
|
[36] |
Zhou S et al 2019 Fusion Eng. Des. 146 902 doi: 10.1016/j.fusengdes.2019.01.109
|
[37] |
Zhou S 1967 First application of the island divertor configuration in the J-TEXT tokamak In: 29th Fusion Energy Conference, EX/P2-21
|
[38] |
Chen Z P et al 2022 Plasma Sci. Technol. 24 124008 doi: 10.1088/2058-6272/aca0dc
|
[39] |
Yang J et al 2024 Nucl. Fusion 64 024001 doi: 10.1088/1741-4326/ad1788
|
[40] |
Mao F Y et al 2022 Plasma Sci. Technol. 24 124002 doi: 10.1088/2058-6272/ac9f2e
|
[41] |
Knieps A et al 2022 Nucl. Fusion 62 026011 doi: 10.1088/1741-4326/ac3a18
|
[42] |
Knieps A et al 2022 Plasma Phys. Control. Fusion 64 084001 doi: 10.1088/1361-6587/ac757d
|
[1] | Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1 |
[2] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[3] | Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821 |
[4] | Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e |
[5] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[6] | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[7] | Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede |
[8] | Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08 |
[9] | GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13 |
[10] | HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11 |
1. | Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047 | |
2. | Tu, H., Cui, Q., Sun, H. et al. An integrated weak thrust stand based on vertical pendulum and its Performance characteristics | [集成化的竖直摆式微推力测试台及其性能]. Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology, 2024, 44(6): 154-163. DOI:10.16708/j.cnki.1000-758X.2024.0100 | |
3. | Zhang, G., Ren, J., Liu, Q. et al. Development of a low-power Hall thruster with permanent magnets and a dual trigger electrode hollow cathode for the Qilu satellite constellation. Aerospace Science and Technology, 2024. DOI:10.1016/j.ast.2024.109538 | |
4. | He, Y., Feng, F., Wang, Z. et al. Research on micro-thruster test platform based on uniform magnetic field calibration | [基于均匀磁场标定的微动力测试平台研究]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2024, 47(5): 730-737. DOI:10.7673/j.issn.1006-2793.2024.05.016 | |
5. | Tu, H., Sun, H., Liu, K. et al. Investigating the repeatability error in thrust measurement on a pendulum-based stand. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115397 | |
6. | Long, J., Cheng, Y., Wang, J. et al. Simulation and test for the micro-newton electromagnetic calibration force measurement. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115001 | |
7. | Sun, B., Chang, Y., Liu, X. et al. Radial ablation uniformity of cathode and design of double anode micro-cathode arc thruster. Acta Astronautica, 2024. DOI:10.1016/j.actaastro.2024.04.044 | |
8. | Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c | |
9. | Kan, W., Liu, W., Lou, W. et al. High-safety energetic micro-igniter for micro-thrust system. Sensors and Actuators A: Physical, 2024. DOI:10.1016/j.sna.2024.115056 | |
10. | Ye, J., Wang, S., Chang, H. et al. Development of a Laser Micro-Thruster and On-Orbit Testing. Aerospace, 2024, 11(1): 23. DOI:10.3390/aerospace11010023 | |
11. | Zhang, Z., Zhang, G., Mao, R. et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.09.011 | |
12. | Tang, H.-B., Zhang, Z.-K., Zhang, Z. Research Progress of Micro Thrust Measurement Technology for Space Electrical Propulsion | [空间电推进微小推力测量技术]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2301001. DOI:10.13675/j.cnki.tjjs.2301001 | |
13. | Zhang, Z., Zhang, G., Qi, J. et al. Roll torque measurement and interpretation of low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2022.11.040 | |
14. | Wang, S., Wang, S., Xing, B. et al. Study on the ablation performance of semiconductor lasers on different materials. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2665908 | |
15. | Xu, H., Mao, Q., Gao, Y. et al. A newly designed decoupling method for micro-Newton thrust measurement. Review of Scientific Instruments, 2023, 94(1): 014504. DOI:10.1063/5.0120130 | |
16. | Liu, Z.X., Yang, W.J., Zhao, P. et al. Loading capacity, rotation loss and torsional oscillation research on an Evershed-type hybrid superconducting bearing used for micro-thrust measurements. Superconductor Science and Technology, 2022, 35(12): 124003. DOI:10.1088/1361-6668/ac96b5 | |
17. | Zhang, Z., Zhang, Z., Wang, Y. et al. Simultaneous experimental verification of indirect thrust measurement method based on Hall-effect thruster and plasma plume. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111384 | |
18. | WANG, S., DU, B., DU, B. et al. Impacts of laser pulse width and target thickness on laser micro-propulsion performance. Plasma Science and Technology, 2022, 24(10): 105504. DOI:10.1088/2058-6272/ac6da8 | |
19. | Feng, X.-H., Hong, Y.-J., Cui, H.-C. et al. Numerical Simulation and Experimental Methods for High Precision Electromagnetic Calibration Force | [高精度电磁标定力数值模拟及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(8): 210806. DOI:10.13675/j.cnki.tjjs.210806 | |
20. | Mühlich, N.S., Gerger, J., Seifert, B. et al. Simultaneously measured direct and indirect thrust of a FEEP thruster using novel thrust balance and beam diagnostics. Acta Astronautica, 2022. DOI:10.1016/j.actaastro.2022.05.009 | |
21. | Wang, S., Du, B., Xing, B. et al. Interface Adhesion Property and Laser Ablation Performance of GAP-PET Double-Layer Tape with Plasma Treatment. Nanomaterials, 2022, 12(11): 1827. DOI:10.3390/nano12111827 | |
22. | Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7 |