Citation: | Jing OU, Jiamin LONG. Estimates of required impurity fraction for EAST divertor detachment[J]. Plasma Science and Technology, 2025, 27(1): 015103. DOI: 10.1088/2058-6272/ad8ffb |
During the EAST radiative divertor experiments, one of the key challenges was how to avoid the occurrence of disruptive events caused by excessive impurity seeding. To estimate the required impurity fraction for divertor detachment, we introduce a reduced edge plasma radiation model. In the model, based on the momentum conservation along the magnetic field line, the upstream pressure is determined by the plasma density and temperature at the divertor target, and then the impurity radiation loss is obtained by the balance of the heat and particle fluxes. It is found that the required impurity fraction shows a non-monotonic variation with divertor electron temperature (Td) when 0.1eV<Td<10eV. In the range of 0.1eV<Td<1eV, the position near the valley of required impurity fraction corresponds to strong plasma recombination. Due to the dependence of the volumetric momentum loss effect on the Td in the range of 1eV<Td<10eV, the required impurity fraction peaks and then decreases as Td is increased. Compared to neon, the usage of argon reduces the impurity fraction by about twice. In addition, for the various fitting parameters in the pressure–momentum loss model, it is shown that the tendency of required impurity fraction with Td always increases first and then decreases in the range of 1eV<Td<10eV, but the required impurity fraction decreases when the model that characterizes the strong loss in pressure momentum is used.
This work was supported by National Natural Science Foundation of China (No. 12375227) and Innovation in Fusion Engineering Technology of Institute (No. E35QT1080C).
[1] |
Loarte A et al 2007 Nucl. Fusion 47 S203 doi: 10.1088/0029-5515/47/6/S04
|
[2] |
Pitts R A et al 2019 Nucl. Mater. Energy 20 100696 doi: 10.1016/j.nme.2019.100696
|
[3] |
Ye M Y et al 2019 Nucl. Fusion 59 096049 doi: 10.1088/1741-4326/ab2bd0
|
[4] |
Zhang M Z et al 2024 Contrib. Plasma Phys. 64 e202300135 doi: 10.1002/ctpp.202300135
|
[5] |
Kallenbach A et al 2010 Plasma Phys. Control. Fusion 52 055002 doi: 10.1088/0741-3335/52/5/055002
|
[6] |
Maddison G P et al 2003 Nucl. Fusion 43 49 doi: 10.1088/0029-5515/43/1/306
|
[7] |
Eldon D et al 2021 Nucl. Mater. Energy 27 100963. doi: 10.1016/j.nme.2021.100963
|
[8] |
Ravensbergen T et al 2021 Nat. Commun. 12 1105 doi: 10.1038/s41467-021-21268-3
|
[9] |
Koenders J T W et al 2023 Nucl. Fusion 63 026006 doi: 10.1088/1741-4326/aca620
|
[10] |
Bernert M et al 2021 Nucl. Fusion 61 024001 doi: 10.1088/1741-4326/abc936
|
[11] |
Wang L et al 2022 Nucl. Fusion 62 076002 doi: 10.1088/1741-4326/ac4774
|
[12] |
Wu K et al 2023 Nucl. Mater. Energy 34 101398 doi: 10.1016/j.nme.2023.101398
|
[13] |
Chen M W et al 2020 Nucl. Fusion 60 076009 doi: 10.1088/1741-4326/ab8c65
|
[14] |
Wu K et al 2018 Nucl. Fusion 58 056019 doi: 10.1088/1741-4326/aab506
|
[15] |
Tao Y Q et al 2023 Nucl. Fusion 63 076008 doi: 10.1088/1741-4326/acd014
|
[16] |
Lengyel L L 1981 Analysis of radiating plasma boundary layers IPP Report 1/191 Garching: Max-Planck-Institut für Plasmaphysik
|
[17] |
Kallenbach A et al 2016 Plasma Phys. Control. Fusion 58 045013 doi: 10.1088/0741-3335/58/4/045013
|
[18] |
Goldston R J, Reinke M L and Schwartz J A 2017 Plasma Phys. Control. Fusion 59 055015 doi: 10.1088/1361-6587/aa5e6e
|
[19] |
Reinke M L 2017 Nucl. Fusion 57 034004 doi: 10.1088/1741-4326/aa5145
|
[20] |
Huber A and Chankin A V 2021 Nucl. Fusion 61 036049 doi: 10.1088/1741-4326/abdded
|
[21] |
Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022 doi: 10.1088/1361-6587/aaacf6
|
[22] |
Zhang X et al 2023 Nucl. Mater. Energy 34 101354 doi: 10.1016/j.nme.2022.101354
|
[23] |
Krasheninnikov S I, Kukushkin A S and Pshenov A A 2022 Plasma Phys. Control. Fusion 64 125011 doi: 10.1088/1361-6587/ac9a6f
|
[24] |
Krasheninnikov S I and Kukushkin A S 2017 J. Plasma Phys. 83 155830501 doi: 10.1017/S0022377817000654
|
[25] |
Hiwatari R et al 2005 J. Nucl. Mater. 337–339 386 doi: 10.1016/j.jnucmat.2004.10.043
|
[26] |
Ou J, Gan C Y and Ye L 2014 Plasma Sci. Technol. 16 907 doi: 10.1088/1009-0630/16/10/02
|
[27] |
Chen J L, Jia G Z and Xiang N 2021 J. Fusion Energy 40 1 doi: 10.1007/s10894-021-00292-7
|
[28] |
Wang M et al 2022 Plasma Sci. Technol. 24 015101 doi: 10.1088/2058-6272/ac320f
|
[29] |
Wang F Q et al 2023 Plasma Sci. Technol. 25 115102 doi: 10.1088/2058-6272/ace026
|
[30] |
Dragojlovic Z et al 2010 Fusion Eng. Des. 85 243 doi: 10.1016/j.fusengdes.2010.02.015
|
[31] |
Eich T et al 2011 Phys. Rev. Lett. 107 215001 doi: 10.1103/PhysRevLett.107.215001
|
[32] |
Stangeby P 2020 Plasma Phys. Control. Fusion 62 025013 doi: 10.1088/1361-6587/ab51d6
|
[33] |
Goswami R et al 2021 Phys. Plasmas 8 857 doi: 10.1063/1.1342028
|
[34] |
Mavrin A A 2017 J. Fusion Energy 36 161 doi: 10.1007/s10894-017-0136-z
|
[35] |
Zhou Y L et al 2022 Plasma Phys. Control. Fusion 64 065006 doi: 10.1088/1361-6587/ac6827
|
[1] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[2] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[3] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[4] | HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04 |
[5] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[6] | HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07 |
[7] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05 |
[10] | CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09 |
1. | Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667 | |
2. | Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049 | |
3. | Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114 | |
4. | Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388 | |
5. | Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980 | |
6. | Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711 |