Citation: | Jing OU, Jiamin LONG. Estimates of required impurity fraction for EAST divertor detachment[J]. Plasma Science and Technology, 2025, 27(1): 015103. DOI: 10.1088/2058-6272/ad8ffb |
During the EAST radiative divertor experiments, one of the key challenges was how to avoid the occurrence of disruptive events caused by excessive impurity seeding. To estimate the required impurity fraction for divertor detachment, we introduce a reduced edge plasma radiation model. In the model, based on the momentum conservation along the magnetic field line, the upstream pressure is determined by the plasma density and temperature at the divertor target, and then the impurity radiation loss is obtained by the balance of the heat and particle fluxes. It is found that the required impurity fraction shows a non-monotonic variation with divertor electron temperature (Td) when 0.1eV<Td<10eV. In the range of 0.1eV<Td<1eV, the position near the valley of required impurity fraction corresponds to strong plasma recombination. Due to the dependence of the volumetric momentum loss effect on the Td in the range of 1eV<Td<10eV, the required impurity fraction peaks and then decreases as Td is increased. Compared to neon, the usage of argon reduces the impurity fraction by about twice. In addition, for the various fitting parameters in the pressure–momentum loss model, it is shown that the tendency of required impurity fraction with Td always increases first and then decreases in the range of 1eV<Td<10eV, but the required impurity fraction decreases when the model that characterizes the strong loss in pressure momentum is used.
This work was supported by National Natural Science Foundation of China (No. 12375227) and Innovation in Fusion Engineering Technology of Institute (No. E35QT1080C).
[1] |
Loarte A et al 2007 Nucl. Fusion 47 S203 doi: 10.1088/0029-5515/47/6/S04
|
[2] |
Pitts R A et al 2019 Nucl. Mater. Energy 20 100696 doi: 10.1016/j.nme.2019.100696
|
[3] |
Ye M Y et al 2019 Nucl. Fusion 59 096049 doi: 10.1088/1741-4326/ab2bd0
|
[4] |
Zhang M Z et al 2024 Contrib. Plasma Phys. 64 e202300135 doi: 10.1002/ctpp.202300135
|
[5] |
Kallenbach A et al 2010 Plasma Phys. Control. Fusion 52 055002 doi: 10.1088/0741-3335/52/5/055002
|
[6] |
Maddison G P et al 2003 Nucl. Fusion 43 49 doi: 10.1088/0029-5515/43/1/306
|
[7] |
Eldon D et al 2021 Nucl. Mater. Energy 27 100963. doi: 10.1016/j.nme.2021.100963
|
[8] |
Ravensbergen T et al 2021 Nat. Commun. 12 1105 doi: 10.1038/s41467-021-21268-3
|
[9] |
Koenders J T W et al 2023 Nucl. Fusion 63 026006 doi: 10.1088/1741-4326/aca620
|
[10] |
Bernert M et al 2021 Nucl. Fusion 61 024001 doi: 10.1088/1741-4326/abc936
|
[11] |
Wang L et al 2022 Nucl. Fusion 62 076002 doi: 10.1088/1741-4326/ac4774
|
[12] |
Wu K et al 2023 Nucl. Mater. Energy 34 101398 doi: 10.1016/j.nme.2023.101398
|
[13] |
Chen M W et al 2020 Nucl. Fusion 60 076009 doi: 10.1088/1741-4326/ab8c65
|
[14] |
Wu K et al 2018 Nucl. Fusion 58 056019 doi: 10.1088/1741-4326/aab506
|
[15] |
Tao Y Q et al 2023 Nucl. Fusion 63 076008 doi: 10.1088/1741-4326/acd014
|
[16] |
Lengyel L L 1981 Analysis of radiating plasma boundary layers IPP Report 1/191 Garching: Max-Planck-Institut für Plasmaphysik
|
[17] |
Kallenbach A et al 2016 Plasma Phys. Control. Fusion 58 045013 doi: 10.1088/0741-3335/58/4/045013
|
[18] |
Goldston R J, Reinke M L and Schwartz J A 2017 Plasma Phys. Control. Fusion 59 055015 doi: 10.1088/1361-6587/aa5e6e
|
[19] |
Reinke M L 2017 Nucl. Fusion 57 034004 doi: 10.1088/1741-4326/aa5145
|
[20] |
Huber A and Chankin A V 2021 Nucl. Fusion 61 036049 doi: 10.1088/1741-4326/abdded
|
[21] |
Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022 doi: 10.1088/1361-6587/aaacf6
|
[22] |
Zhang X et al 2023 Nucl. Mater. Energy 34 101354 doi: 10.1016/j.nme.2022.101354
|
[23] |
Krasheninnikov S I, Kukushkin A S and Pshenov A A 2022 Plasma Phys. Control. Fusion 64 125011 doi: 10.1088/1361-6587/ac9a6f
|
[24] |
Krasheninnikov S I and Kukushkin A S 2017 J. Plasma Phys. 83 155830501 doi: 10.1017/S0022377817000654
|
[25] |
Hiwatari R et al 2005 J. Nucl. Mater. 337–339 386 doi: 10.1016/j.jnucmat.2004.10.043
|
[26] |
Ou J, Gan C Y and Ye L 2014 Plasma Sci. Technol. 16 907 doi: 10.1088/1009-0630/16/10/02
|
[27] |
Chen J L, Jia G Z and Xiang N 2021 J. Fusion Energy 40 1 doi: 10.1007/s10894-021-00292-7
|
[28] |
Wang M et al 2022 Plasma Sci. Technol. 24 015101 doi: 10.1088/2058-6272/ac320f
|
[29] |
Wang F Q et al 2023 Plasma Sci. Technol. 25 115102 doi: 10.1088/2058-6272/ace026
|
[30] |
Dragojlovic Z et al 2010 Fusion Eng. Des. 85 243 doi: 10.1016/j.fusengdes.2010.02.015
|
[31] |
Eich T et al 2011 Phys. Rev. Lett. 107 215001 doi: 10.1103/PhysRevLett.107.215001
|
[32] |
Stangeby P 2020 Plasma Phys. Control. Fusion 62 025013 doi: 10.1088/1361-6587/ab51d6
|
[33] |
Goswami R et al 2021 Phys. Plasmas 8 857 doi: 10.1063/1.1342028
|
[34] |
Mavrin A A 2017 J. Fusion Energy 36 161 doi: 10.1007/s10894-017-0136-z
|
[35] |
Zhou Y L et al 2022 Plasma Phys. Control. Fusion 64 065006 doi: 10.1088/1361-6587/ac6827
|
[1] | Meichu HUANG (黄梅初), Chundong HU (胡纯栋), Yuanzhe ZHAO (赵远哲), Caichao JIANG (蒋才超), Yahong XIE (谢亚红), Shiyong CHEN (陈世勇), Qinglong CUI (崔庆龙). The development of data acquisition and control system for extraction power supply of prototype RF ion source[J]. Plasma Science and Technology, 2018, 20(8): 85602-085602. DOI: 10.1088/2058-6272/aabde5 |
[2] | Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1 |
[3] | Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd |
[4] | LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01 |
[5] | ZHANG Xiaodan (张小丹), HU Chundong (胡纯栋), SHENG Peng (盛鹏), ZHAO Yuanzhe (赵远哲), WU Deyun (吴德云), CUI Qinglong (崔庆龙). Development of Data Processing Software for NBI Spectroscopic Analysis System[J]. Plasma Science and Technology, 2015, 17(4): 327-330. DOI: 10.1088/1009-0630/17/4/12 |
[6] | ZHANG Xiaodan(张小丹), HU Chundong(胡纯栋), SHENG Peng(盛鹏), ZHAO Yuanzhe(赵远哲), WU Deyun(吴德云), CUI Qinglong(崔庆龙). The Implementation of Computer Data Processing Software for EAST NBI[J]. Plasma Science and Technology, 2014, 16(10): 984-987. DOI: 10.1088/1009-0630/16/10/15 |
[7] | YANG Fei(杨飞), XIAO Bingjia(肖炳甲), ZHANG Ruirui(张睿瑞). Construction and Implementation of the Online Data Analysis System on EAST[J]. Plasma Science and Technology, 2014, 16(5): 521-526. DOI: 10.1088/1009-0630/16/5/13 |
[8] | MA Wendong(马文东), SHAN Jiafang(单家方), XU Handong(徐旵东), HU Huaichuan(胡怀传), WANG Mao(王茂), WU Zege(吴则格). Power Control and Data Acquisition System for High Power Microwave Test Bench[J]. Plasma Science and Technology, 2014, 16(4): 415-419. DOI: 10.1088/1009-0630/16/4/21 |
[9] | ZHANG Xiaodan (张小丹), HU Chundong (胡纯栋), SHENG Peng (盛鹏), LIU Zhimin (刘智民), et al.. Development of a Data Acquisition Control System for the First NBI on EAST[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/17 |
[10] | Amit K Srivastava, Manika Sharma, Imran Mansuri, Atish Sharma, Tushar Raval, Subrata Pradhan. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics[J]. Plasma Science and Technology, 2012, 14(11): 1002-1007. DOI: 10.1088/1009-0630/14/11/08 |