Advanced Search+
ZHANG Hong, DAI Zhongling, WANG Younian. Characteristics of a Collisional Sheath Biased by a Dual Frequency Source[J]. Plasma Science and Technology, 2011, 13(5): 513-518.
Citation: ZHANG Hong, DAI Zhongling, WANG Younian. Characteristics of a Collisional Sheath Biased by a Dual Frequency Source[J]. Plasma Science and Technology, 2011, 13(5): 513-518.

Characteristics of a Collisional Sheath Biased by a Dual Frequency Source

Funds: Supported by the National Natural Science Foundation of China (No.10635010 and No.10975030), and the Science Research Foundation of Dalian University of Technology.
More Information
  • Received Date: December 19, 2010
  • A hybrid model is used to simulate the characteristics of a collisional sheath in a capacitively coupled plasma (CCP) driven by a dual frequency source including a RF and a pulsed current source applied to the same electrode. The hybrid model includes a fluid model used to simulate the characteristics of the collisional sheath, and a Monte-Carlo (MC) method to obtain both ion energy and ion angular distributions (IEDs and IADs) impinging on the substrate. The effect of the low frequency of the pulsed source and the gas pressure on the characteristics of the sheath, as well as the IEDs and IADs, were studied. The results show that the ratio of pulse/RF frequency and the gas pressure are crucial for the characteristics of the sheath and the IEDs. The IADs are significantly more sensitive to the gas pressure.
  • Related Articles

    [1]Liuliang HE, Feng HE, Jiting OUYANG. Plasma density enhancement in radio-frequency hollow electrode discharge[J]. Plasma Science and Technology, 2024, 26(4): 044003. DOI: 10.1088/2058-6272/ad273b
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [4]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [5]WU Jun (吴军), WU Jian (吴健), XU Zhengwen (许正文). Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere[J]. Plasma Science and Technology, 2016, 18(9): 890-896. DOI: 10.1088/1009-0630/18/9/03
    [6]CAO Xiuquan (曹修全), YU Deping (余德平), XIANG Yong (向勇), YAO Jin (姚进), MIAO Jianguo (苗建国). Influence of the Laminar Plasma Torch Construction on the Jet Characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. DOI: 10.1088/1009-0630/18/7/07
    [7]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08

Catalog

    Article views (1005) PDF downloads (738) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return