Advanced Search+
Abdullah ZAFAR, Ping ZHU, Ahmad ALI, Shiyong ZENG (曾市勇), Haolong LI (李浩龙). Effects of helium massive gas injection level on disruption mitigation on EAST[J]. Plasma Science and Technology, 2021, 23(7): 75103-075103. DOI: 10.1088/2058-6272/abfea3
Citation: Abdullah ZAFAR, Ping ZHU, Ahmad ALI, Shiyong ZENG (曾市勇), Haolong LI (李浩龙). Effects of helium massive gas injection level on disruption mitigation on EAST[J]. Plasma Science and Technology, 2021, 23(7): 75103-075103. DOI: 10.1088/2058-6272/abfea3

Effects of helium massive gas injection level on disruption mitigation on EAST

Funds: his research was supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE03050004), National Natural Science Foundation of China (Nos. 11775221 and 51821005), US DOE (Nos. DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No. 2019kfyXJJS193).
More Information
  • Received Date: February 21, 2021
  • Revised Date: May 04, 2021
  • Accepted Date: May 05, 2021
  • In this study, NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak. It is demonstrated in simulations that two different scenarios of plasma cooling (complete cooling and partial cooling) take place for different amounts of injected impurities. For the impurity injection above a critical level, a single MHD activity is able to induce a complete core temperature collapse. For impurity injection below the critical level, a series of multiple minor disruptions occur before the complete thermal quench.
  • [1]
    Hender T C et al 2007 Nucl. Fusion 47 S128
    [2]
    Lehnen M et al 2015 J. Nucl. Mater 463 39
    [3]
    Taylor P L et al 1999 Phys. Plasmas 6 1872
    [4]
    Bakhtiari M et al 2005 Nucl. Fusion 45 318
    [5]
    Granetz R et al 2006 Nucl. Fusion 46 1001
    [6]
    Pautasso G et al 2009 Plasma Phys. Control. Fusion 51 124056
    [7]
    Reux C et al 2010 Nucl. Fusion 50 095006
    [8]
    Lehnen M et al 2011 Nucl. Fusion 51 123010
    [9]
    Hollmann E M et al 2009 AIP Conf. Proc. 1161 65
    [10]
    Hollmann E M et al 2019 Phys. Rev. Lett. 122 065001
    [11]
    Commaux N et al 2010 Nucl. Fusion 50 112001
    [12]
    Commaux N et al 2016 Nucl. Fusion 56 046007
    [13]
    Hollmann E M et al 2011 J. Nucl. Mater 415 S27
    [14]
    Bakhtiari M et al 2011 Nucl. Fusion 51 063007
    [15]
    Pautasso G et al 2011 Nucl. Fusion 51 103009
    [16]
    Lehnen M et al 2013 Nucl. Fusion 53 093007
    [17]
    De Vries P C et al 2012 Plasma Phys. Control. Fusion 54 124032
    [18]
    Duan Y M et al 2015 J. Nucl. Mater 463 727
    [19]
    Chen D L et al 2018 Nucl. Fusion 58 036003
    [20]
    Huang Y et al 2018 Nucl. Fusion 58 126024
    [21]
    Ding Y et al 2018 Plasma Sci. Technol. 20 125101
    [22]
    Pestchanyi S et al 2015 Fusion Eng. Des. 96–97 685
    [23]
    Hollmann E M, Humphreys D A and Parks P B 2012 Nucl.Fusion 52 033001
    [24]
    Putvinski S et al 2010 Disruption mitigation in ITER Proc.23rd IAEA Fusion Energy Conf. (Daejeon, Korea) (Vienna:IAEA) pp 1–6 ITR
    [25]
    Sugihara M et al 2012 Disruption impacts and their mitigation target values Proc. 24th IAEA Fusion Energy Conf. (San Diego, USA) (Vienna: IAEA)
    [26]
    Sovinec C R et al 2004 J. Comput. Phys. 195 355
    [27]
    Huysmans G T and Czarny O 2007 Nucl. Fusion 47 659
    [28]
    Czarny O and Huysmans G T 2008 J. Comput. Phys. 227 7423
    [29]
    Hu D et al 2021 Nucl. Fusion 61 026015
    [30]
    Jardin S C et al 2012 Comput. Sci. Discov 5 014002
    [31]
    Izzo V A et al 2008 Phys. Plasmas 15 056109
    [32]
    Izzo V A 2013 Phys. Plasmas 20 056107
    [33]
    Izzo V A et al 2015 Nucl. Fusion 55 073032
    [34]
    Kim C C et al 2019 Phys. Plasmas 26 042510
    [35]
    Izzo V A 2020 Nucl. Fusion 60 066023
    [36]
    Whyte D G et al 1997 Energy balance, radiation and stability during rapid plasma termination via impurity pellet injections on DIII-D Proc. 24th EPS Conf. on Controlled Fusion and Plasma Physics (Berchtesgaden,Germany) (EPS)
  • Related Articles

    [1]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [2]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [3]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [4]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [5]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [6]I. A. KHAN, R. S. RAWAT, R. VERMA, G. MACHARAGA, R. AHMAD, Z. A. UMAR, et al.. Role of Ion Beam Irradiation and Annealing Effect on the Deposition of AlON Nanolayers by Using Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(11): 1127-1135. DOI: 10.1088/1009-0630/15/11/10
    [7]ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19
    [8]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [9]XIONG Liwei (熊礼威), WANG Jianhua (汪建华), LIU Fan (刘繁), MAN Weidong (满卫东), et al. Deposition and Boron Doping of Nano-Crystalline Diamond Thin Films on Poly-crystalline Diamond Thick Films[J]. Plasma Science and Technology, 2012, 14(10): 905-908. DOI: 10.1088/1009-0630/14/10/09
    [10]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11

Catalog

    Article views (93) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return