Advanced Search+
Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815
Citation: Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815

Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state

Funds: This work is supported by the National Key Research and Development Program of China (No. 2017YFA0402300), National Natural Science Foundation of China (Nos. 11904293, 12064040 and 11874051), the Science and technology project of Gansu Province (No. 20JR5RA530), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (No. NWNU-LKQN-18-32), and the Funds for Innovative Fundamental Research Group Project of Gansu Province (No. 20JR5RA541).
More Information
  • Received Date: May 08, 2021
  • Revised Date: September 14, 2021
  • Accepted Date: September 17, 2021
  • Based on the governing equations which include the heat conduction equation in the target and the fluid equations of the vapor plasma, a two-dimensional axisymmetric model for ns-laser ablation considering the Knudsen layer and plasma shielding effect is developed. The equations of state of the plasma are described by a real gas approximation, which divides the internal energy into the thermal energy of atoms, ions and electrons, ionization energy and the excitation energy of atoms and ions. The dynamic evolution of the silicon target and plasma during laser ablation is studied by using this model, and the distributions of the temperature, plasma density, Mach number related to the evaporation/condensation of the target surface, laser transmissivity as well as internal energy of the plasma are given. It is found that the evolution of the target surface during laser ablation can be divided into three stages: (1) the target surface temperature increases continuously; (2) the sonic and subsonic evaporation; and (3) the subsonic condensation. The result of the internal energy distribution indicates that the ionization and excitation energy plays an important role in the internal energy of the plasma during laser ablation. This model is suitable for the case that the temperature of the target surface is lower than the critical temperature.
  • [1]
    Dubey A K and Yadava V 2008 Int. J. Mach. Tools Manuf.48 609
    [2]
    Christen H M and Eres G 2008 J. Phys.: Condens. Matter 20 264005
    [3]
    Irissou E et al 2006 J. Appl. Phys. 99 034904
    [4]
    Miziolek A W, Palleschi V and Schechter I 2006 LaserInduced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
    [5]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [6]
    Musztyfaga-Staszuk M M 2017 Int. J. Thermophys. 38 130
    [7]
    Dobrzański L A et al 2006 Mater. Sci. Forum 530–531 334
    [8]
    Aguilera J A, Aragón C and Peñalba F 1998 Appl. Surf. Sci.127–129 309
    [9]
    Amoruso S et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R131
    [10]
    Lee D H et al 2011 Appl. Phys. A 104 863
    [11]
    Myong R S 2016 Phys. Fluids 28 012002
    [12]
    Gusarov A V and Smurov I 2002 Phys. Fluids 14 4242
    [13]
    Lilley C R and Sader J E 2008 Proc. R. Soc. A 464 2015
    [14]
    Autrique D et al 2013 J. Appl. Phys. 114 023301
    [15]
    Zel’dovich Y B and Raizer Y P 2002 Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (New York: Dover)
    [16]
    Amoruso S 1999 Appl. Phys. A 69 323
    [17]
    Clair G and L’Hermite D 2011 J. Appl. Phys. 110 083307
    [18]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1996 J. Appl.Phys. 79 7205
    [19]
    Tao S et al 2012 Appl. Surf. Sci. 258 7766
    [20]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [21]
    Wu B X and Shin Y C 2006 J. Appl. Phys. 99 084310
    [22]
    Mazhukin V I, Nossov V V and Smurov I 2007 J. Appl. Phys.101 024922
    [23]
    Zhang Z Y, Han Z X and Dulikravich G S 2001 J. Appl. Phys.90 5889
    [24]
    Fu C L, Wang Q and Ding H B 2018 Plasma Sci. Technol. 20 085501
    [25]
    Shabanov S V and Gornushkin I B 2014 Spectrochim. Acta B 100 147
    [26]
    Tian Z F and Ge Y B 2007 J. Comput. Appl. Math. 198 268
    [27]
    Makhov D V and Lewis L J 2003 Phys. Rev. B 67 153202
    [28]
    Yoo J H et al 2000 J. Appl. Phys. 88 1638
    [29]
    Knight C J 1979 AIAA J. 17 519
    [30]
    Min Q et al 2016 Opt. Lett. 41 5282
    [31]
    Min Q et al 2018 J. Quant. Spectrosc. Radiat. Transf.210 189
    [32]
    Wang K P et al 2020 Phys. Plasmas 27 063513
  • Related Articles

    [1]Yu CHEN, Jiawei LUO, Wen LEI, Yan SHEN, Shuai CAO. Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms[J]. Plasma Science and Technology, 2024, 26(11): 115504. DOI: 10.1088/2058-6272/ad709c
    [2]Jun XIONG, Shiyu LU, Xiaoming LIU, Wenjun ZHOU, Xiaoming ZHA, Xuekai PEI. Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal[J]. Plasma Science and Technology, 2024, 26(8): 085403. DOI: 10.1088/2058-6272/ad495e
    [3]Zhao ZHANG, Yaju LI, Guanghui YANG, Qiang ZENG, Xiaolong LI, Liangwen CHEN, Dongbin QIAN, Duixiong SUN, Maogen SU, Lei YANG, Shaofeng ZHANG, Xinwen MA. Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms[J]. Plasma Science and Technology, 2024, 26(5): 055506. DOI: 10.1088/2058-6272/ad1792
    [4]Wei ZHENG, Fengming XUE, Chengshuo SHEN, Yu ZHONG, Xinkun AI, Zhongyong CHEN, Yonghua DING, Ming ZHANG, Zhoujun YANG, Nengchao WANG, Zhichao ZHANG, Jiaolong DONG, Chouyao TANG, Yuan PAN. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124003. DOI: 10.1088/2058-6272/ac9e46
    [5]Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d
    [6]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [7]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [8]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [9]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [10]WANG Guiqiu(王桂秋), E Peng(鄂鹏), XIA Wenwen(夏文文). Vicinage Effects for a Nitrogen Molecular Cluster in Plasmas[J]. Plasma Science and Technology, 2014, 16(7): 637-641. DOI: 10.1088/1009-0630/16/7/02
  • Cited by

    Periodical cited type(5)

    1. Cheng, X., Song, H., Jia, M. et al. Experimental study on basic characteristics of high performance plasma jet actuator. International Journal of Hydrogen Energy, 2025. DOI:10.1016/j.ijhydene.2024.11.443
    2. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2
    3. Liu, X., Zhang, J., He, Y. et al. Gliding arc discharge in combination with Cu/Cu2O electrocatalysis for ammonia production. Plasma Science and Technology, 2024, 26(7): 075501. DOI:10.1088/2058-6272/ad2d10
    4. Zheng, Q., Li, L., Xue, Z. et al. Plasma Agricultural Nitrogen Fixation Using Clean Energies: New Attempt of Promoting PV Absorption in Rural Areas. Processes, 2023, 11(7): 2030. DOI:10.3390/pr11072030
    5. Li, Z., Zhu, Y., Pan, D. et al. Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023, 11(3): 873. DOI:10.3390/pr11030873

    Other cited types(0)

Catalog

    Article views (263) PDF downloads (539) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return