Citation: | Hongyu FAN, Chunjie NIU, Xiaoping LI, Weifeng LIU, Yang ZHANG, Weiyuan NI, Yinghui ZHANG, Lu LIU, Dongping LIU, Günther BENSTETTER, Guangjiu LEI, Jinhai NIU. W fuzz layers: very high resistance to sputtering under fusion-relevant He+ irradiations[J]. Plasma Science and Technology, 2022, 24(1): 015601. DOI: 10.1088/2058-6272/ac35a2 |
In this study, we have modeled the sputtering process of energetic He+ ions colliding with W nano-fuzz materials, based on the physical processes, such as the collision and diffusion of energetic particles, sputtering and redeposition. Our modeling shows that the fuzzy nanomaterials with a large surface-to-volume ratio exhibit very high resistance to sputtering under fusion-relevant He+ irradiations, and their sputtering yields are mainly determined by the thickness of fuzzy nano-materials, the reflection coefficients and mean free paths of energetic particles, surface sputtering yields of a flat base material, and the geometry of nano-fuzz. Our measurements have confirmed that the surface sputtering yield of a W nano-fuzz layer with the columnar geometry of nano-fuzz in cross-section is about one magnitude of order lower than the one of smooth W substrates. This work provides a complete model for energetic particles colliding with the nano-fuzz layer and clarifies the fundamental sputtering process occurring in the nano-fuzz layer.
This work is supported by the National Key R & D Program of China (No. 2017YFE0300106), National Natural Science Foundation of China (No. 11320101005), Liaoning Provincial Natural Science Foundation (Nos. 20180510006, 2019-ZD-0186), and Natural Science Basis Research Program of Shanxi Province (No. 2020GY-268).
[1] |
Knaster J, Moeslang A and Muroga T 2016 Nat. Phys. 12 424 doi: 10.1038/nphys3735
|
[2] |
Hommelhoff P et al 2006 Phys. Rev. Lett. 96 077401 doi: 10.1103/PhysRevLett.96.077401
|
[3] |
Weyer G et al 1980 Phys. Rev. Lett. 44 155 doi: 10.1103/PhysRevLett.44.155
|
[4] |
Yu M L 1978 Phys. Rev. Lett. 40 574 doi: 10.1103/PhysRevLett.40.574
|
[5] |
Ferroni F, Hammond K D and Wirth B D 2015 J. Nucl. Mater. 458 419 doi: 10.1016/j.jnucmat.2014.12.090
|
[6] |
Sefta F et al 2013 J. Nucl. Mater. 438 S493 doi: 10.1016/j.jnucmat.2013.01.101
|
[7] |
De Temmerman G, Hirai T and Pitts R A 2018 Plasma Phys. Control. Fusion 60 044018 doi: 10.1088/1361-6587/aaaf62
|
[8] |
Behrisch R and Eckstein W 2007 Topics Appl. Physics vol 110 (Berlin: Springer)
|
[9] |
Tanabe T 1994 J. Nucl. Fusion 5 129
|
[10] |
OnoT K T and Muramoto T 2008 Springer Series in Materials Science vol 109 (Berlin: Springer)
|
[11] |
Nietiadi M L and Urbassek H M 2013 Appl. Phys. Lett. 103 113108 doi: 10.1063/1.4821294
|
[12] |
Kajita S et al 2009 Nucl. Fusion 49 095005 doi: 10.1088/0029-5515/49/9/095005
|
[13] |
Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165 doi: 10.1016/j.jnucmat.2010.06.034
|
[14] |
Fiflis P, Connolly N and Ruzic D N 2016 J. Nucl. Mater. 482 201 doi: 10.1016/j.jnucmat.2016.10.015
|
[15] |
Wright G M et al 2013 J. Nucl. Mater. 438 S84 doi: 10.1016/j.jnucmat.2013.01.013
|
[16] |
Wang K et al 2017 Sci. Rep. 7 42315 doi: 10.1038/srep42315
|
[17] |
Valles G et al 2017 J. Nucl. Mater. 490 108 doi: 10.1016/j.jnucmat.2017.04.021
|
[18] |
Bi Z H et al 2019 Nucl. Fusion 59 086025 doi: 10.1088/1741-4326/ab2472
|
[19] |
Fan H Y et al 2020 Nucl. Fusion 60 046011 doi: 10.1088/1741-4326/ab71bb
|
[20] |
Nishijima D et al 2011 J. Nucl. Mater. 415 S96 doi: 10.1016/j.jnucmat.2010.12.017
|
[21] |
Arredondo R et al 2020 Nucl. Mater. Energy 23 100749 doi: 10.1016/j.nme.2020.100749
|
[22] |
Eksaeva A et al 2021 Nucl. Mater. Energy 27 100987 doi: 10.1016/j.nme.2021.100987
|
[23] |
Brezinsek S et al 2019 Nucl. Fusion 59 096035 doi: 10.1088/1741-4326/ab2aef
|
[24] |
Ni W Y et al 2020 J. Nucl. Mater. 536 152229 doi: 10.1016/j.jnucmat.2020.152229
|
[25] |
Liu L et al 2016 J. Nucl. Mater. 471 1 doi: 10.1016/j.jnucmat.2016.01.001
|
[26] |
Eckstein W and Preuss R 2003 J. Nucl. Mater. 320 209 doi: 10.1016/S0022-3115(03)00192-2
|
[27] |
Ni W Y et al 2019 J. Nucl. Mater. 527 151800 doi: 10.1016/j.jnucmat.2019.151800
|
[28] |
Ni W Y et al 2020 Vacuum 173 109146 doi: 10.1016/j.vacuum.2019.109146
|
[29] |
Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)
|
[30] |
Ziegler J F and Biersack J P 1985 The stopping and range of
ions in matter ed D A Bromley Treatise on Heavy-Ion Science (Boston, MA: Springer) p 93
|
[31] |
Roth J, Bohdansky J and Ottenberger W 1979 Data on low energy light ion sputtering garching: max-planck-institut für plasmaphysik report IPP 9/26
|
[32] |
Eckstein W et al 1993 Sputtering data garching: max-planckinstitut füur plasmaphysik report IPP 9/82
|
[33] |
Rosenberg D and Wehner G K 1962 J. Appl. Phys. 33 1842 doi: 10.1063/1.1728843
|
[34] |
Woller K B, Whyte D G and Wright G M 2017 Nucl. Fusion 57 066005 doi: 10.1088/1741-4326/aa67ac
|
[35] |
Hwangbo D et al 2018 Nucl. Fusion 58 096022 doi: 10.1088/1741-4326/aacd1f
|
[36] |
Hwangbo D et al 2019 Nucl. Mater. Energy 18 250 doi: 10.1016/j.nme.2019.01.008
|
[1] | Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1 |
[2] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[3] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[4] | Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4 |
[5] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[6] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[7] | Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07 |
[10] | WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566. |