Citation: | Xinwei CHEN, Bijiao HE, Zuo GU, Hai GENG, Ning GUO, Yong ZHAO, Kai SHI, Kai TIAN, Tao CHEN, Yifan MA. Investigation into the thermal effect of the LIPS-200 ion thruster plume[J]. Plasma Science and Technology, 2022, 24(7): 074003. DOI: 10.1088/2058-6272/ac4dea |
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work, with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of 15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 kW m-2 and 0.3 kW m-2 for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is 0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model (EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.
The authors are grateful to National Natural Science Foundation of China (No. 12005087) and the Science and Technology Program of Gansu Province (Nos. 2006ZCTF0054, HTKJ2019KL510003, and 20JR10RA478).
[1] |
Chen J J et al 2021 Plasma Sci. Technol. 23 104002 doi: 10.1088/2058-6272/ac11af
|
[2] |
Chen J J et al 2016 Plasma Sci. Technol. 18 611 doi: 10.1088/1009-0630/18/6/06
|
[3] |
Jia Y H et al 2018 Plasma Sci. Technol. 20 105502 doi: 10.1088/2058-6272/aace52
|
[4] |
Cai G B et al 2018 Acta Astronaut. 151 645 doi: 10.1016/j.actaastro.2018.07.007
|
[5] |
Chen X W et al 2021 AIP Adv. 11 115311 doi: 10.1063/5.0063803
|
[6] |
Brown D L et al 2017 J. Propul. Power 33 582 doi: 10.2514/1.B35696
|
[7] |
Sheehan J P et al 2017 J. Propul. Power 33 614 doi: 10.2514/1.B35697
|
[8] |
Lobbia R B and Beal B E 2017 J. Propul. Power 33 566 doi: 10.2514/1.B35531
|
[9] |
Farnell C C et al 2017 J. Propul. Power 33 638 doi: 10.2514/1.B35413
|
[10] |
King L B et al 1998 J. Propul. Power 14 327 doi: 10.2514/2.5301
|
[11] |
Berisford D F et al 2008 Rev. Sci. Instrum. 79 10F515 doi: 10.1063/1.2955710
|
[12] |
Weng H Y et al 2018 AIP Adv. 8 085027 doi: 10.1063/1.5042011
|
[13] |
Shang S F et al 2019 Acta Astronautica. 160 7 doi: 10.1016/j.actaastro.2019.04.008
|
[14] |
Zhang T P et al 2013 Initial flight test results of the LIPS-200 electric propulsion system on SJ-9A satellite Proc. of the 3rd Int. Electric Propulsion Conf. (Washington, DC, USA) (IEPC) 47
|
[15] |
Zhang Z et al 2021 Aerosp. Sci. Technol. 110 106480 doi: 10.1016/j.ast.2020.106480
|
[16] |
Brown D L and Gallimore A D 2010 Rev. Sci. Instrum. 81 063504 doi: 10.1063/1.3449541
|
[17] |
Zhang Z et al 2016 Rev. Sci. Instrum. 87 123510 doi: 10.1063/1.4972345
|
[18] |
Zeng M et al 2020 AIP Adv. 10 085317 doi: 10.1063/5.0007348
|
[19] |
Zhang Z et al 2016 Rev. Sci. Instrum. 87 113502 doi: 10.1063/1.4966912
|
[20] |
Zhang Z and Tang H B 2013 High Vol. Eng. 39 1602 (in Chinese) doi: 10.3969/j.issn.1003-6520.2013.07.009
|
[21] |
Zheng H R et al 2018 Plasma Sci. Technol. 20 105501 doi: 10.1088/2058-6272/aad5da
|
[22] |
Zheng H R et al 2017 Acta Astronaut. 132 161 doi: 10.1016/j.actaastro.2016.12.016
|
[1] | Maoyang LI, Chaochao MO, Jiali CHEN, Peiyu JI, Haiyun TAN, Xiaoman ZHANG, Meili CUI, Lanjian ZHUGE, Xuemei WU, Tianyuan HUANG. Effects of power on ion behaviors in radio-frequency magnetron sputtering of indium tin oxide (ITO)[J]. Plasma Science and Technology, 2024, 26(7): 075506. DOI: 10.1088/2058-6272/ad3599 |
[2] | Weichen NI, Chao YE, Yiqing YU, Xiangying WANG. Effect of gas pressure on ion energy at substrate side of Ag target radio-frequency and very-high-frequency magnetron sputtering discharge[J]. Plasma Science and Technology, 2022, 24(2): 025506. DOI: 10.1088/2058-6272/ac3c3e |
[3] | Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62 |
[4] | Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379 |
[5] | Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395 |
[6] | LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10 |
[7] | WANG Qing (王庆), WANG Yongfu (王永富), BA Dechun (巴德纯), YUE Xiangji (岳向吉). The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process[J]. Plasma Science and Technology, 2012, 14(3): 235-239. DOI: 10.1088/1009-0630/14/3/09 |
[8] | MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671. |
[9] | MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576. |
[10] | RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555. |
1. | Li, J., Wen, G., He, W. et al. Investigation of the effect of electrodeposited Cu from graphite wrapped in polypyrrole film formed by chemical oxidation. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.110322 | |
2. | Zhang, Z., Yang, Q., Wu, S. et al. Thickness Effect of TiO2 Film Deposited on a Blade-Plate Electrode Surface on Breakdown Characteristics of Propylene Carbonate. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3): 915-923. DOI:10.1109/TDEI.2021.009565 | |
3. | Wu, M., Ye, C., Liu, X. Influence of 27.12 MHz Bias on Properties of Magnetron Sputtering Ion Beam: A Methodological Study | [27.12 MHz基片偏压在调控磁控溅射离子能量中的作用研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2020, 40(4): 373-380. DOI:10.13922/j.cnki.cjovst.2020.04.16 |