Advanced Search+
Dengfeng XU, Mei HUANG, Xixuan CHEN, Feng ZHANG, Donghui XIA, Zhijiang WANG, Yuan PAN. Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak[J]. Plasma Science and Technology, 2023, 25(6): 064002. DOI: 10.1088/2058-6272/acb31f
Citation: Dengfeng XU, Mei HUANG, Xixuan CHEN, Feng ZHANG, Donghui XIA, Zhijiang WANG, Yuan PAN. Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak[J]. Plasma Science and Technology, 2023, 25(6): 064002. DOI: 10.1088/2058-6272/acb31f

Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak

More Information
  • Corresponding author:

    Donghui XIA, E-mail: xiadh@hust.edu.cn

  • Received Date: August 10, 2022
  • Revised Date: January 10, 2023
  • Accepted Date: January 12, 2023
  • Available Online: December 05, 2023
  • Published Date: February 28, 2023
  • As a promising method for fast ion diagnostics, collective Thomson scattering (CTS) can measure the one-dimensional velocity distribution of fast ions with high spatial and temporal resolution. The feasibility of diagnosing fast ions in a compact high-field tokamak by CTS was studied in this work, and the results showed that a wide range of probing frequencies could be applied. A high-frequency case and a low-frequency case were mainly considered for fast ion diagnostics in a compact high-field tokamak. The use of a high probing frequency could effectively avoid the refraction effect of the beams, while the application of a low probing frequency allows greater flexibility in the selection of scattering angle which may help to improve the spatial resolution. Based on typical plasma conditions (B0 = 12.2 T, ne0 = 4.3 × 1020 m−3, Te0 = 22.2 keV, Ti0 = 19.8 keV) for a compact high-field tokamak, a 220 GHz CTS diagnostic that utilizes a small scattering angle of θ = 30° and a 160 GHz CTS diagnostic that utilizes an orthogonal geometry were proposed. Further study showed that the high-frequency case could operate in a wider range of plasma conditions and provide more information on fast ions while the low-frequency case could achieve higher spatial resolution of the poloidal direction.

  • This work is supported by the National MCF Energy R & D Program of China (No. 2019YFE03020003), and partly supported by the Key Research and Development Program of Hubei Province (No. 2021BAA167) and National Natural Science Foundation of China (No. 51821005). The authors would like to thank the ECRH group of the auxiliary heating department at SWIP as well as the J-TEXT laboratory for their assistance.

  • [1]
    Rodriguez-Fernandez P et al 2022 Nucl. Fusion 62 042003 doi: 10.1088/1741-4326/ac1654
    [2]
    Greenwald M et al 1984 Phys. Rev. Lett. 53 352 doi: 10.1103/PhysRevLett.53.352
    [3]
    Greenwald M et al 2014 Phys. Plasmas 21 110501 doi: 10.1063/1.4901920
    [4]
    Buratti P et al 2013 Nucl. Fusion 53 104012 doi: 10.1088/0029-5515/53/10/104012
    [5]
    Nielsen S K et al 2015 Plasma Phys. Control. Fusion 57 035009 doi: 10.1088/0741-3335/57/3/035009
    [6]
    Bindslev H et al 1999 Phys. Rev. Lett. 83 3206 doi: 10.1103/PhysRevLett.83.3206
    [7]
    Moseev D et al 2011 Plasma Phys. Control. Fusion 53 105004 doi: 10.1088/0741-3335/53/10/105004
    [8]
    Salewski M et al 2010 Nucl. Fusion 50 035012 doi: 10.1088/0029-5515/50/3/035012
    [9]
    Nishiura M et al 2014 Nucl. Fusion 54 023006 doi: 10.1088/0029-5515/54/2/023006
    [10]
    Rasmussen J et al 2019 Nucl. Fusion 59 096051 doi: 10.1088/1741-4326/ab2f50
    [11]
    Korsholm S B et al 2022 Rev. Sci. Instrum. 93 103539 doi: 10.1063/5.0101867
    [12]
    Nishiura M et al 2020 J. Instrum. 15 C01002 doi: 10.1088/1748-0221/15/01/C01002
    [13]
    Moseev D et al 2020 J. Instrum. 15 C05035 doi: 10.1088/1748-0221/15/05/C05035
    [14]
    Moseev D et al 2018 Rev. Modern Plasma Phys. 2 7 doi: 10.1007/s41614-018-0019-4
    [15]
    Nielsen S K et al 2017 Phys. Scr. 92 024001 doi: 10.1088/1402-4896/92/2/024001
    [16]
    Froula D H et al 2011 Plasma Scattering of Electromagnetic Radiation 2nd edn (Boston: Academic)
    [17]
    Bindslev H 1992 On the theory of Thomson scattering and reflectometry in a relativistic magnetized plasma PhD Thesis University of Oxford, Oxford, USA
    [18]
    Hughes T P and Smith S R P 1989 J. Plasma Phys. 42 215 doi: 10.1017/S0022377800014318
    [19]
    Hughes T P and Smith S R P 1988 Nucl. Fusion 28 1451 doi: 10.1088/0029-5515/28/8/012
    [20]
    Salewski M et al 2011 Nucl. Fusion 51 083014 doi: 10.1088/0029-5515/51/8/083014
    [21]
    Scott S D et al 2020 J. Plasma Phys. 86 865860508 doi: 10.1017/S0022377820001087
    [22]
    Moseev D and Salewski M 2019 Phys. Plasmas 26 020901 doi: 10.1063/1.5085429
    [23]
    Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
    [24]
    Nishiura M et al 2008 Rev. Sci. Instrum. 79 10E731 doi: 10.1063/1.2978201
    [25]
    Prater R 2004 Phys. Plasmas 11 2349 doi: 10.1063/1.1690762
  • Related Articles

    [1]Yan YANG, Tianyuan HUANG, Maoyang LI, Yaowei YU, Jianjun HUANG, Bin YU, Xuemei WU, Peiyu JI. The effect of nitrogen concentration on the properties of N-DLC prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2022, 24(10): 105502. DOI: 10.1088/2058-6272/ac6ec0
    [2]Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
    [3]Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
    [4]LIU Dan (刘丹), GOU Li (芶立), RAN Junguo (冉均国), ZHU Hong (朱虹), et al.. Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition[J]. Plasma Science and Technology, 2015, 17(7): 574-578. DOI: 10.1088/1009-0630/17/7/08
    [5]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [6]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [7]LIN Zeng (蔺增), WANG Feng (王凤), GAO Ding (高丁), BA Dechun (巴德纯), LIU Chunming (刘春明). Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate[J]. Plasma Science and Technology, 2013, 15(7): 690-695. DOI: 10.1088/1009-0630/15/7/16
    [8]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [9]XIONG Liwei (熊礼威), WANG Jianhua (汪建华), LIU Fan (刘繁), MAN Weidong (满卫东), et al. Deposition and Boron Doping of Nano-Crystalline Diamond Thin Films on Poly-crystalline Diamond Thick Films[J]. Plasma Science and Technology, 2012, 14(10): 905-908. DOI: 10.1088/1009-0630/14/10/09
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(15)

    1. Zouaoui, F., Menassol, G., Ducros, C. et al. Electrochemical sensors based on amorphous carbon electrode: A review. Microchemical Journal, 2025. DOI:10.1016/j.microc.2025.112650
    2. Zhu, Y., Wang, Z., Ma, F. et al. Effect of pH on Nano-tribochemical Behavior in Chemical Mechanical Polishing of Aluminum Alloy | [pH 条件对铝合金化学机械抛光过程中纳米摩擦化学行为的影响]. Surface Technology, 2025, 54(2): 173-181 and 221. DOI:10.16490/j.cnki.issn.1001-3660.2025.02.014
    3. Li, H., Sun, P., Qi, A. et al. Modulation of structure and corrosion behavior of Si-DLC coatings on AZ31 by applying a self-source bias. Ceramics International, 2023, 49(19): 32193-32204. DOI:10.1016/j.ceramint.2023.07.194
    4. Sahoo, S.K., Bolagam, R., Sardar, K. et al. Diamond-like Carbon Patterning by the Submerged Discharge Plasma Technique via Soft Solution Processing. ACS Omega, 2023, 8(19): 17053-17063. DOI:10.1021/acsomega.3c01322
    5. Zarei, A., Momeni, M. Optical and structural properties of nitrogen incorporated Ni doped diamond-like carbon thin films. Optical and Quantum Electronics, 2023, 55(5): 415. DOI:10.1007/s11082-023-04629-8
    6. YANG, Y., HUANG, T., LI, M. et al. The effect of nitrogen concentration on the properties of N-DLC prepared by helicon wave plasma chemical vapor deposition. Plasma Science and Technology, 2022, 24(10): 105502. DOI:10.1088/2058-6272/ac6ec0
    7. Lu, Y., Huang, G., Wang, S. et al. Pulsed laser deposition of the protective and Anti-reflective DLC film. Infrared Physics and Technology, 2021. DOI:10.1016/j.infrared.2021.103949
    8. Wang, C., Zhang, H., Chen, Q. Recent Progress on Helicon Plasma | [螺旋波等离子体研究进展]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2021, 41(8): 710-720. DOI:10.13922/j.cnki.cjvst.202009019
    9. Ji, P.-Y., Huang, T.-Y., Chen, J.-L. et al. In-situ diagnosis of Ar/CH4 helicon wave plasma for synthesis of carbon nanomaterials | [螺旋波等离子体制备多种碳基薄膜原位诊断研究]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(9): 097201. DOI:10.7498/aps.70.20201809
    10. Lu, Y.-M., Huang, G.-J., Cheng, Y. et al. Tribological and mechanical properties of non-hydrogenated W-doped diamond-like carbon film prepared by pulsed laser deposition | [脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(4): 046801. DOI:10.7498/aps.70.20201505
    11. Chen, J., Ji, P., Yang, Y. et al. Effect of DC negative bias on structure and properties of nitrogen doped diamond–like carbon films synthesized by HWP–CVD technique. Diamond and Related Materials, 2021. DOI:10.1016/j.diamond.2021.108243
    12. Wang, K.-L., Zhou, H., Zhang, K.-F. et al. Research progress on microstructure and tribological properties of doped diamond-like carbon films. Surface Technology, 2021, 50(2): 148-159. DOI:10.16490/j.cnki.issn.1001-3660.2021.02.015
    13. Ji, P., Chen, J., Huang, T. et al. Hydrogen-modulated Ar/CH4 HWP-CVD for fast preparation of multi-wall carbon nanotube arrays with high specific capacitance. Diamond and Related Materials, 2020. DOI:10.1016/j.diamond.2020.108067
    14. Chen, J.-L., Ji, P.-Y., Yang, Y. et al. The structure and properties of amorphous diamond-like carbon films deposited by helicon wave plasma chemical vapor deposition. Thin Solid Films, 2020. DOI:10.1016/j.tsf.2020.138167
    15. Qian, J., Ji, P., Jin, C. et al. The Effects of Magnetic Field on the Properties of Diamond-Like Carbon Films Produced by High-Density Helicon Wave Plasma. IEEE Transactions on Plasma Science, 2020, 48(7): 2431-2436. DOI:10.1109/TPS.2020.2997858

    Other cited types(0)

Catalog

    Figures(14)

    Article views (55) PDF downloads (114) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return