Advanced Search+
LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
Citation: LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06

Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

Funds: supported by National Natural Science Foundation of China (No. 51405261)
More Information
  • Received Date: December 17, 2015
  • Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage.
  • 1 Coburn J W, Winters H F. 1983, Annual Review of Materials Research, 13: 91 2 Lieberman M A, Lichtenberg A J. 2005, Principles of Plasma Discharges and Materials Processing. Wiley, New York 3 Georgieva V, Bogaerts A, Gijbels R. 2003, Journal of Applied Physics, 94: 3748 4 Lee J K, Babaeva N Y, Kim H C, et al. 2004, IEEE Transactions on Plasma Science, 32: 47 5 Lee J K, Manuilenko O V, Babaeva N Y, et al. 2005, Plasma Sources Science and Technology, 14: 89 6 Gans T, Schulze J, O'Connell D, et al. 2006, Applied Physics Letters, 89: 261502 7 Sharma S, Turner M M. 2013, Journal of Physics D: Applied Physics, 46: 285203 8 Sharma S, Turner M M. 2013, Plasma Sources Science and Technology, 22: 35014 9 Goto H H, Lowe H D, Ohmi T. 1993, IEEE Transactions on Semiconductor Manufacturing, 6: 58 10 Kitajima T, Takeo Y, Petrovic Z L, et al. 2000, Applied Physics Letters, 77: 489 11 Robiche J, Boyle P C, Turner M M, et al. 2003, Journal of Physics D: Applied Physics, 36: 1810 12 Lu Y, Yan D, Chen Y. 2009, Journal of Hydrodynamics, Ser. B, 21: 814 13 Lafleur T, Delattre P A, Johnson E V, et al. 2012, Applied Physics Letters, 101: 124104 14 Lieberman M A, Booth J P, Chabert P, et al. 2002, Plasma Sources Science and Technology, 11: 283 15 Sansonnens L, Howling A A, Hollenstein C. 2006, Plasma Sources Science and Technology, 15: 302 16 Hebner G A, Barnat E V, Miller P A, et al. 2006, Plasma Sources Science and Technology, 15: 879 17 Miller P A, Barnat E V, Hebner G A, et al. 2006, Plasma Sources Science and Technology, 15: 889 18 Chabert P. 2007, Journal of Physics D: Applied Physics, 40: R63 19 Lee I, Graves D B, Lieberman M A. 2008, Plasma Sources Science and Technology, 17: 15018 20 Eremin D, Hemke T, Brinkmann R P, et al. 2013, Journal of Physics D: Applied Physics, 46: 84017 21 Liu Y X, Zhang Y R, Bogaerts A, et al. 2015, Journal of Vacuum Science and Technology A, 33: 20801 22 Zhao G, Xu Y, Shang J, et al. 2011, Plasma Science and Technology, 13: 61 23 Schmidt H, Sansonnens L, Howling A A, et al. 2004, Journal of Applied Physics, 95: 4559 24 Schmidt N, Schulze J, Sch?ungel E, et al. 2013, Journal of Physics D: Applied Physics, 46: 505202 25 Volynets V, Shin H, Kang D, et al. 2010, Journal of Physics D: Applied Physics, 43: 85203 26 Zhang Y R, Xu X, Bogaerts A, et al. 2012, Journal of Physics D: Applied Physics, 45: 15202 27 Chen Z, Kenney J, Rauf S, et al. 2011, IEEE Transactions on Plasma Science, 39: 2526 28 Jung P G, Hoon S S, Wook C C, et al. 2013, Plasma Sources Science and Technology, 22: 55005 29 COMSOL. V4.4. 2013, PlasmaModelLibraryManual 30 Passchier J D P, Goedheer W J. 1993, Journal of Applied Physics, 74: 3744 31 Nitschke T E, Graves D B. 1994, Journal of Applied Physics, 76: 5646 32 Hagelaar G J M, Pitchford L C. 2005, Plasma Sources Science and Technology, 14: 722 33 Wang S, Xu X, Song Y, et al. 2008, Plasma Science and Technology, 10: 57 34 Phelps A V. Database. www.lxcat.net
  • Related Articles

    [1]Pengyu WANG, Siyu XING, Daoman HAN, Yuru ZHANG, Yong LI, Cheng ZHOU, Fei GAO, Younian WANG. Effects of external parameters on plasma characteristics and uniformity in a dual cylindrical inductively coupled plasma[J]. Plasma Science and Technology, 2024, 26(12): 125401. DOI: 10.1088/2058-6272/ad73aa
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [4]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [5]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [6]HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04
    [7]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05

Catalog

    Article views (304) PDF downloads (823) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return