Advanced Search+
Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
Citation: Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6

The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes

More Information
  • Received Date: February 28, 2018
  • This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes. Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 kV. A plasma reactor equipped with two 0.3×0.3 mm2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m−3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used, this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.
  • [1]
    Kogelschatz U 2002 Plasma Chem. Plasma Process. 23 1
    [2]
    Okazaki S et al 1993 J. Phys. D Appl. Phys. 26 889
    [3]
    Gnapowski E 2008 Works Inst. Electr. Electrotechnol. 239 43
    [4]
    Liu W et al 2017 Eur. Lett. 118 45001
    [5]
    Ma Y et al 2015 Nanoscale Res. Lett. 10 308
    [6]
    Luo H Y et al 2017 IEEE Trans. Plasma Sci. 45 749
    [7]
    H?ft H et al 2016 Plasma Sources Sci. Technol. 25 064002
    [8]
    Fang Z et al 2012 IEEE Trans. Plasma Sci. 40 1884
    [9]
    Ye Q Z et al 2012 Plasma Sources Sci. Technol. 21 065008
    [10]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [11]
    Gnapowski E and Gnapowski S 2014 World Acad. Sci. Eng. Technol. Int. J. Electr. 8 410 (http://scholar.waset.org/ 1307-6892/9997987)
    [12]
    Gnapowski E and Gnapowski S 2016 IEEE Trans. Plasma Sci. 44 2079
    [13]
    Benard N and Moreau E 2014 Exp. Fluids 55 1846
    [14]
    Gnapowski E 2017 Polish Patent Office, No. 225505 https:// grab.uprp.pl/sites/WynalazkiWzoryUzytkowe/Opisy/ Patenty%20i%20Wzory%20uytkowe/225505_B1.pdf
    [15]
    Young H D, Freedman R A and Ford A L 2012 University Physics with Modern Physics 13th edn (San Francisco: Addison-Wesley) p 801
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [4]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (161) PDF downloads (424) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return