Advanced Search+
Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
Citation: Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9

Loss-cone instabilities for compact fusion reactor and field-reversed configuration

More Information
  • Received Date: May 23, 2018
  • Loss-cone instabilities are studied for linear fusion devices. The gyro-kinetic equation for such a configuration is rigorously constructed in terms of action-angle variables by making use of canonical transformation. The dispersion relation, including for the first time, finite bounce frequency is obtained and numerically solved. The loss-cone modes are found near ion-cyclotron frequency. The growth rates are greatly reduced and approaching zero with increasing beta value. The results suggest that loss-cone instabilities are unlikely to be threatening to linear fusion devices since a new longitudinal invariant is found and gives a constraint which helps confinement.
  • [1]
    Bagryansky P A et al 2015 Phys. Rev. Lett. 114 205001
    [2]
    Binderbauer M W et al 2015 Phys. Plasmas 22 056110
    [3]
    McGuire T 2015 Colloquium: The Lockheed Martin Compact Fusion Reactor (Princeton, NJ: Princeton University) https://pppl.gov/events/colloquium-lockheed-martin- compact-fusion-reactor
    [4]
    Post R F and Rosenbluth M N 1966 Phys. Fluids 9 730
    [5]
    Rosenbluth M N and Post R F 1965 Phys. Fluids 8 547
    [6]
    Bajaj N K and Krall N A 1971 Phys. Fluids 14 2158
    [7]
    Davidson R C and Gladd N T 1977 Phys. Fluids 20 1516
    [8]
    Summers D and Thorne R M 1995 J. Plasma Phys. 53 293
    [9]
    Beasley C O and Cordey J G 1968 Plasma Phys. 10 411
    [10]
    Bishop A S 1958 Project Sherwood: The U.S. Program in Controlled Fusion (Reading, MA: Addison-Wesley)
    [11]
    Makowski M A and Emmert G A 1985 Phys. Fluids 28 2838
    [12]
    Kaufman A N 1972 Phys. Fluids 15 1063
    [13]
    Lichtenberg A J and Lieberman M A 1983 Regular and Stochastic Motion (New York: Springer)
    [14]
    Stix T H 1992 Waves in Plasmas (New York: American Institute of Physics) 10017-3483
    [15]
    Lee X S, Myra J R and Catto P J 1983 Phys. Fluids 26 223
    [16]
    Wang Z T et al 2012 Phys. Plasmas 19 072110
    [17]
    Wang Z T et al 2014 Phys. Plasmas 21 032505
    [18]
    Gott Y V and Ioffe M S 1962 Nucl. Fusion Suppl. 3 1045
    [19]
    Fowler T K 1969 Nucl. Fusion 9 3
  • Related Articles

    [1]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [2]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [3]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [4]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [5]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [6]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [7]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [8]CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05
    [9]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
    [10]D. GUENDOUZ, A. HAMID, A. HENNAD. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms[J]. Plasma Science and Technology, 2011, 13(5): 583-590.

Catalog

    Article views (158) PDF downloads (427) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return