Advanced Search+
Rui LIU (刘蕊), Zhe YU (俞哲), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor[J]. Plasma Science and Technology, 2019, 21(5): 54001-054001. DOI: 10.1088/2058-6272/aafbbc
Citation: Rui LIU (刘蕊), Zhe YU (俞哲), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor[J]. Plasma Science and Technology, 2019, 21(5): 54001-054001. DOI: 10.1088/2058-6272/aafbbc

Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor

Funds: This work was supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2013BAC06B02), Public Science and Technology Research Funds Projects of Ocean (No. 201305027), National Natural Science Foundation of China (Nos. 51877024, 61427804, 51309039), Liaoning Scientific Research Project of Department of Education of Liaoning Province (No. LZ2015007) and High Level Talent Innovation Project of Dalian (No. 2016RQ040).
More Information
  • Received Date: September 28, 2018
  • The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species, which can cooperate with hydraulic cavitation gas–liquid mixer to realize the application of advanced oxidation technology in water treatment. In this technology, the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas–liquid mixed container. In this paper, the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image, electrical characteristics and spectral diagnosis, in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa. The study indicated that, when the pressure decreases, the duty ratio of ionization in the discharge gap and number of electrons with high energy increases, leading to a rise in reactive oxygen species production. When the oxygen reaches the maximum ionization, the concentration of reactive oxygen species is the highest. Then, the discharge intensity continues to increase, producing more heat, which will decompose the ozone and lower the production of reactive oxygen species. The oxygen plasma reactor has an optimum working pressure at different input powers, which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.
  • [1]
    Daniels S L 2002 IEEE Trans. Plasma Sci. 30 1471
    [2]
    Malik M A, Schoenbach K H and Heller R 2014 Chem. Eng. J. 256 222
    [3]
    Pankaj S K et al 2014 Innov. Food Sci. Emerg. Technol. 21 107
    [4]
    Kaushik R et al 2014 PLoS One 9 e100737
    [5]
    Pavlovich M J et al 2013 J. Phys. D: Appl. Phys. 46 145202
    [6]
    Bai M D et al 2018 Chemosphere 208 541
    [7]
    Tian Y P et al 2017 High Volt. Eng. 43 1792 (in Chinese)
    [8]
    Tian Y P et al 2015 Ecotoxicology 24 2141
    [9]
    Huba A K, Mirabelli M F and Zenobi R 2018 Anal. Chim. Acta 1030 125
    [10]
    Ma C H et al 2014 J. Ind. Eng. Chem. 20 2769
    [11]
    Sudhakaran S and Amy G L 2013 Water Res. 47 1111
    [12]
    Yan Y H et al 2004 Chin. J. Atom. Mol. Phys. 21 31 (in Chinese)
    [13]
    Fang Z et al 2009 J. Phys. D: Appl. Phys. 42 085203
    [14]
    Gregory J W et al 2007 AIAA 2007 185
    [15]
    Lai R C and Lin Q 2008 Piezoelect. Acoustoopt. 30 359 (in Chinese)
    [16]
    Benard N, Balcon N and Moreau E 2008 J. Phys. D: Appl. Phys. 41 042002
    [17]
    Bottelberghe K et al 2010 AIAA 2010 550
    [18]
    Yu Z et al 2012 Acta Phys. Sin. 61 195202
    [19]
    Xie W J et al 2008 Acta Phys.-Chim. Sin. 24 827
    [20]
    Yu Z et al 2017 Plasma Chem. Plasma Process. 37 475
    [21]
    Alonso J M et al 2003 Ozone: Sci. Eng. 25 363
  • Related Articles

    [1]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [2]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [3]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [7]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [8]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [9]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.
  • Cited by

    Periodical cited type(7)

    1. Yang, R., Che, X., Deng, B. et al. The plasma reforming of methane in rocket engines under multiple working conditions and its effect on ignition delay. International Journal of Hydrogen Energy, 2024. DOI:10.1016/j.ijhydene.2024.06.329
    2. Zhang, W., Xu, H., Wei, X. et al. Discharge of Inductively Coupled Plasma at Different Thicknesses. Springer Proceedings in Physics, 2023. DOI:10.1007/978-981-99-1576-7_34
    3. Shanhaowei, H., Zhixuan, H., Meng, L. et al. Working properties of GEM-TPC at low pressure. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(3): 121-128. DOI:10.1016/j.jandt.2022.09.002
    4. Zhang, W., Pei, B., Feng, P. et al. Experimental research on closed plasma discharge and spectral diagnosis excited by high voltage and high frequency power supply. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111191
    5. Tren’kin, A.A., Almazova, K.I., Belonogov, A.N. et al. Dynamics of the Spatial Structure of a Microsecond Pulsed Barrier Discharge Initiated in Atmospheric Pressure Air in the Point–Plane Geometry at Different Polarities of Feed Voltage. Technical Physics, 2021, 66(2): 243-249. DOI:10.1134/S1063784221020225
    6. Mei, D., Fang, Z., Shao, T. Recent Progress on Characteristics and Applications of Atmospheric Pressure Low Temperature Plasmas | [大气压低温等离子体特性与应用研究现状]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(4): 1339-1358. DOI:10.13334/j.0258-8013.pcsee.191615
    7. Zhao, P., Gu, J., Wang, H. et al. How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: A kinetic modeling study. Plasma Science and Technology, 2020, 22(3): 034013. DOI:10.1088/2058-6272/ab65b3

    Other cited types(0)

Catalog

    Article views (204) PDF downloads (258) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return