Advanced Search+
Rui LIU (刘蕊), Zhe YU (俞哲), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor[J]. Plasma Science and Technology, 2019, 21(5): 54001-054001. DOI: 10.1088/2058-6272/aafbbc
Citation: Rui LIU (刘蕊), Zhe YU (俞哲), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor[J]. Plasma Science and Technology, 2019, 21(5): 54001-054001. DOI: 10.1088/2058-6272/aafbbc

Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor

Funds: This work was supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2013BAC06B02), Public Science and Technology Research Funds Projects of Ocean (No. 201305027), National Natural Science Foundation of China (Nos. 51877024, 61427804, 51309039), Liaoning Scientific Research Project of Department of Education of Liaoning Province (No. LZ2015007) and High Level Talent Innovation Project of Dalian (No. 2016RQ040).
More Information
  • Received Date: September 28, 2018
  • The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species, which can cooperate with hydraulic cavitation gas–liquid mixer to realize the application of advanced oxidation technology in water treatment. In this technology, the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas–liquid mixed container. In this paper, the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image, electrical characteristics and spectral diagnosis, in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa. The study indicated that, when the pressure decreases, the duty ratio of ionization in the discharge gap and number of electrons with high energy increases, leading to a rise in reactive oxygen species production. When the oxygen reaches the maximum ionization, the concentration of reactive oxygen species is the highest. Then, the discharge intensity continues to increase, producing more heat, which will decompose the ozone and lower the production of reactive oxygen species. The oxygen plasma reactor has an optimum working pressure at different input powers, which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.
  • [1]
    Daniels S L 2002 IEEE Trans. Plasma Sci. 30 1471
    [2]
    Malik M A, Schoenbach K H and Heller R 2014 Chem. Eng. J. 256 222
    [3]
    Pankaj S K et al 2014 Innov. Food Sci. Emerg. Technol. 21 107
    [4]
    Kaushik R et al 2014 PLoS One 9 e100737
    [5]
    Pavlovich M J et al 2013 J. Phys. D: Appl. Phys. 46 145202
    [6]
    Bai M D et al 2018 Chemosphere 208 541
    [7]
    Tian Y P et al 2017 High Volt. Eng. 43 1792 (in Chinese)
    [8]
    Tian Y P et al 2015 Ecotoxicology 24 2141
    [9]
    Huba A K, Mirabelli M F and Zenobi R 2018 Anal. Chim. Acta 1030 125
    [10]
    Ma C H et al 2014 J. Ind. Eng. Chem. 20 2769
    [11]
    Sudhakaran S and Amy G L 2013 Water Res. 47 1111
    [12]
    Yan Y H et al 2004 Chin. J. Atom. Mol. Phys. 21 31 (in Chinese)
    [13]
    Fang Z et al 2009 J. Phys. D: Appl. Phys. 42 085203
    [14]
    Gregory J W et al 2007 AIAA 2007 185
    [15]
    Lai R C and Lin Q 2008 Piezoelect. Acoustoopt. 30 359 (in Chinese)
    [16]
    Benard N, Balcon N and Moreau E 2008 J. Phys. D: Appl. Phys. 41 042002
    [17]
    Bottelberghe K et al 2010 AIAA 2010 550
    [18]
    Yu Z et al 2012 Acta Phys. Sin. 61 195202
    [19]
    Xie W J et al 2008 Acta Phys.-Chim. Sin. 24 827
    [20]
    Yu Z et al 2017 Plasma Chem. Plasma Process. 37 475
    [21]
    Alonso J M et al 2003 Ozone: Sci. Eng. 25 363
  • Related Articles

    [1]Longfei Ma, jinhao liu, Jiahao Fu, Jianwu He, Li Duan, Qi Kang. Performance of radio frequency ion thruster with polytetrafluoroethylene propellant embedded in discharge chamber[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adae44
    [2]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [3]Zhiwei HUA, Pingyang WANG, Zhongxi NING, Zhanwen YE, Zongqi XU. Early experimental investigation of the C12A7 hollow cathode fed on iodine[J]. Plasma Science and Technology, 2022, 24(7): 074004. DOI: 10.1088/2058-6272/ac4fb4
    [4]Xinghua ZHANG, Zhenhua ZHANG, Shaoxia JIA, Ting JIN, Jinghua YANG, Long LI, Fangfang LIU, Yong CAI, Jian CAI. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2022, 24(1): 015506. DOI: 10.1088/2058-6272/ac34e6
    [5]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [6]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [9]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
    [10]DAI Zhongling(戴忠玲), YUE Guang(岳光), WANG Younian(王友年). Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source[J]. Plasma Science and Technology, 2012, 14(3): 240-244. DOI: 10.1088/1009-0630/14/3/10
  • Cited by

    Periodical cited type(18)

    1. Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2. DOI:10.1007/s44205-025-00101-9
    2. Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025. DOI:10.1016/j.paerosci.2023.100900
    3. Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224. DOI:10.1134/S0018143924700899
    4. Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582. DOI:10.1134/S0018143924700486
    5. Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501. DOI:10.1088/2058-6272/ad240e
    6. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    7. Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131. DOI:10.13922/j.cnki.cjvst.202307002
    8. Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202. DOI:10.7498/aps.72.20230785
    9. Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001. DOI:10.1088/1361-6595/ac9ad7
    10. Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012. DOI:10.13675/j.cnki.tjjs.210125
    11. Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007. DOI:10.1088/1361-6595/ac8288
    12. Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004. DOI:10.1088/2058-6272/ac4fb4
    13. Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461. DOI:10.13922/j.cnki.cjvst.202112003
    14. Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067. DOI:10.1088/1742-6596/2182/1/012067
    15. Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022. DOI:10.3389/frobt.2021.792831
    16. ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506. DOI:10.1088/2058-6272/ac34e6
    17. Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302. DOI:10.1063/5.0063578
    18. O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30. DOI:10.3390/aerospace8010022

    Other cited types(0)

Catalog

    Article views (204) PDF downloads (258) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return