Citation: | Linlin HU, Dimin SUN, Qili HUANG, Tingting ZHUO, Guowu MA, Yi JIANG, Shenggang GONG, Zaojin ZENG, Zixing GUO, Chaohai DU, Fanhong LI, Hongbin CHEN, Fanbao MENG, Hongge MA. Design and preliminary test of a 105/140 GHz dual-frequency MW-level gyrotron[J]. Plasma Science and Technology, 2022, 24(3): 035601. DOI: 10.1088/2058-6272/ac2b8f |
A dual-frequency (105/140 GHz) MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics, China Academy of Engineering Physics. This gyrotron employs a cylindrical cavity working in the TE18, 7 mode at 105 GHz and the TE24, 9 mode at 140 GHz. A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies. For the proof-test phase, the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of ~500 kW for a short-pulse duration. In the preliminary short-pulse proof-test in the first quarter of 2021, the dual-frequency gyrotron achieved output powers of 300 kW at 105 GHz and 540 kW at 140 GHz, respectively, under 5 Hz 1 ms continuous pulse-burst operations. Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window. This gyrotron design was preliminarily validated.
This work is supported in part by NSAF (No. U1830201), in part by the State Administration of Science, Technology and Industry for Nation Defense of China, Technology Foundation Project (No. JSJL2019212B006), in part by the Academy Innovation Funder (No. CX2020038), and in part by the National Defense Basic Scientific Research Program (No. 2018212C015).
[1] |
Nusinovich G S, Thumm M K A and Petelin M I 2014 J. Infrared Millim. Terahz. Waves 35 325 doi: 10.1007/s10762-014-0050-7
|
[2] |
Thumm M K A et al 2019 Nucl. Fusion 59 073001 doi: 10.1088/1741-4326/ab2005
|
[3] |
Xu H D et al 2016 Plasma Sci. Technol. 18 442 doi: 10.1088/1009-0630/18/4/19
|
[4] |
Litvak A G et al 2011 J. Infrared Millim. Terahz. Waves 32 337 doi: 10.1007/s10762-010-9743-8
|
[5] |
Gantenbein G et al 2014 IEEE Trans. Electron Dev. 61 1806 doi: 10.1109/TED.2013.2294739
|
[6] |
Thumm M et al 2001 Fusion Eng. Des. 53 407 doi: 10.1016/S0920-3796(00)00519-6
|
[7] |
Alberti S et al 2019 High-efficiency, long-pulse operation of MW-level dual-frequency gyrotron, 84/126 GHz, for the TCV Tokamak Proc. 2019 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Paris, France) (Piscataway, NJ: IEEE)(https://doi.org/10.1109/IRMMW-THz.2019.8874423)
|
[8] |
Denisov G et al 2017 EPJ Web Conf. 147 04003 doi: 10.1051/epjconf/201714704003
|
[9] |
Hu L L et al 2021 IEEE Trans. Plasma Sci. 49 1468 doi: 10.1109/TPS.2021.3066553
|
[10] |
Sun D M et al 2021 Recent results of a 28 GHz 400 kW long pulse Gyrotron at IAE-CAEP Proc. 2021 46th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Chengdu, China)
|
[11] |
Kartikeyan M V et al 2004 Gyrotron: High-Power Microwave and Millimeter Wave Technology (Berlin: Springer)
|
[12] |
Fliflet A W et al 1991 Phys. Rev. A 43 6166 doi: 10.1103/PhysRevA.43.6166
|
[13] |
Jin J B et al 2009 IEEE Trans. Microw. Theory Tech. 57 1661 doi: 10.1109/TMTT.2009.2021878
|
[14] |
Katsenelenbaum B Z and Semenov V V 1967 Radio Eng. Electron. Phys. 12 223
|
[15] |
Huang Q L et al 2021 Development of A MW-level dual-frequency gyrotron for fusion Proc. 2021 46th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Chengdu, China)
|
[16] |
Thumm M et al 2001 Fusion Eng. Des. 53 517 doi: 10.1016/S0920-3796(00)00531-7
|
[17] |
Parshin V V et al 1994 Int. J. Infrared Millim. Waves 15 339 doi: 10.1007/BF02096245
|
[18] |
Myasnikov V E et al 1999 Development of 1 MW long-pulse/CW gyrotrons in 110–170 GHz frequency range Proc. Int. University Conf. Electronics and Radiophysics of Ultra-High Frequencies (Saint Petersburg, Russia) (Piscataway, NJ: IEEE)(https://doi.org/10.1109/UHF.1999.787900)
|
[19] |
Gorelov Y et al 2002 Infared monitoring of 110 GHz gyrotron windows at DⅢ-D Proc. 12th Joint Workshop Aix-en-Provence (France: World Scientific)(https://doi.org/10.1142/9789812705082_0070)
|
[1] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[2] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[3] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[4] | HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04 |
[5] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[6] | HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07 |
[7] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05 |
[10] | CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09 |
1. | Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667 | |
2. | Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049 | |
3. | Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114 | |
4. | Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388 | |
5. | Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980 | |
6. | Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711 |