Advanced Search+
Songning WANG, Dianxin ZHANG, Nan CHEN, Yaxiong HE, Hong ZHANG, Chuan KE, Tao XU, Yongliang CHEN, Yong ZHAO. Self-absorption effects of laser-induced breakdown spectroscopy under different gases and gas pressures[J]. Plasma Science and Technology, 2023, 25(2): 025501. DOI: 10.1088/2058-6272/ac8788
Citation: Songning WANG, Dianxin ZHANG, Nan CHEN, Yaxiong HE, Hong ZHANG, Chuan KE, Tao XU, Yongliang CHEN, Yong ZHAO. Self-absorption effects of laser-induced breakdown spectroscopy under different gases and gas pressures[J]. Plasma Science and Technology, 2023, 25(2): 025501. DOI: 10.1088/2058-6272/ac8788

Self-absorption effects of laser-induced breakdown spectroscopy under different gases and gas pressures

More Information
  • Corresponding author:

    Hong ZHANG, E-mail: zhanghong@home.swjtu.edu.cn

  • Received Date: April 27, 2022
  • Revised Date: July 18, 2022
  • Accepted Date: August 04, 2022
  • Available Online: December 05, 2023
  • Published Date: December 21, 2022
  • The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy. In this paper, the self-absorption effects of laser-induced 7050 Al alloy plasma under different pressures in air, Ar, and N2 have been studied. Compared with air and N2, Ar significantly enhances the spectral signal. Furthermore, the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption, and the influences of gas species and gas pressure on self-absorption are analyzed. In addition, it is found that the spectral intensity fluctuates with the change of pressure of three gases. It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting, which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures. The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.

  • This work was supported by National Key Research and Development Program of China (Nos. 2017YFE0301306, 2017YFE0301300, and 2017YFE0301506). Fujian Province Industrial Guidance Project (No. 2019H0011).

  • [1]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
    [2]
    He Y X et al 2021 Spectrosc. Spectral Anal. 41 2681 (in Chinese)
    [3]
    Body D and Chadwick B L 2001 Rev. Sci. Instrum. 72 1625 doi: 10.1063/1.1338486
    [4]
    Colao F et al 2004 Planet. Space Sci. 52 117 doi: 10.1016/j.pss.2003.08.012
    [5]
    Motto-Ros V et al 2013 Spectrochim. Acta Part B: At. Spectrosc. 87 168 doi: 10.1016/j.sab.2013.05.020
    [6]
    Hou J J 2020 Theory and technology of self-absorption-free laser-induced breakdown spectroscopy PhD Thesis Shanxi University (in Chinese) Taiyuan, China
    [7]
    Tako T 1961 J. Phys. Soc. Japan 16 2016 doi: 10.1143/JPSJ.16.2016
    [8]
    Ciucci A et al 1999 Appl. Spectrosc. 53 960 doi: 10.1366/0003702991947612
    [9]
    Deng F et al 2021 Spectrosc. Spectral Anal. 41 2989 (in Chinese)
    [10]
    Hai R et al 2019 Opt. Express 27 2509 doi: 10.1364/OE.27.002509
    [11]
    Cui H H et al 2020 Optik 204 164144 doi: 10.1016/j.ijleo.2019.164144
    [12]
    Yi R X et al 2016 J. Anal. At. Spectrom. 31 961 doi: 10.1039/C5JA00500K
    [13]
    Mansour S 2015 Opt. Photon. J. 5 79 doi: 10.4236/opj.2015.53007
    [14]
    Ning R B et al 2018 Spectrosc. Spectral Anal. 38 3546 (in Chinese)
    [15]
    Hao Z Q et al 2016 Opt. Express 24 26521 doi: 10.1364/OE.24.026521
    [16]
    Tang Y et al 2018 Opt. Express 26 12121 doi: 10.1364/OE.26.012121
    [17]
    Karnadi I et al 2020 Sci Rep. 10 13278 doi: 10.1038/s41598-020-70151-6
    [18]
    Surmick D M and Parigger C G 2017 J. Phys. Conf. Ser. 810 012054 doi: 10.1088/1742-6596/810/1/012054
    [19]
    Aragón C, Bengoechea J and Aguilera J A 2001 Spectrochim. Acta Part B: At. Spectrosc. 56 619 doi: 10.1016/S0584-8547(01)00172-0
    [20]
    El Sherbini A M et al 2005 Spectrochim. Acta Part B: At. Spectrosc. 60 1573 doi: 10.1016/j.sab.2005.10.011
    [21]
    Hou J J et al 2017 Opt. Express 25 23024 doi: 10.1364/OE.25.023024
    [22]
    Rezaei F, Karimi P and Tavassoli S H 2013 Appl. Opt. 52 5088 doi: 10.1364/AO.52.005088
    [23]
    Zehra K et al 2017 Laser Part. Beams 35 492 doi: 10.1017/S0263034617000477
    [24]
    Chen D et al 2005 Chin. J. Lasers 32 1353 (in Chinese)
    [25]
    Yu J L et al 2020 Spectrochim. Acta Part B: At. Spectrosc. 174 105992 doi: 10.1016/j.sab.2020.105992
    [26]
    Chen J Z et al 2005 Spectrosc. Spectral Anal. 25 341 (in Chinese)
    [27]
    Parigger C G, Surmick D M and Gautam G 2017 J. Phys. Conf. Ser. 810 012012 doi: 10.1088/1742-6596/810/1/012012
    [28]
    Hermann J et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 100 189 doi: 10.1016/j.sab.2014.08.014
    [29]
    Surmick D M and Parigger C G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115701 doi: 10.1088/0953-4075/48/11/115701
    [30]
    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin: Springer)
    [31]
    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [32]
    Parigger C G et al 2015 Opt. Lett. 40 3436 doi: 10.1364/OL.40.003436
    [33]
    Parigger C G et al 2018 Atoms 6 36 doi: 10.3390/atoms6030036
    [34]
    El Sherbini, Hegazy H and El Sherbini T M 2006 Spectrochim. Acta Part B: At. Spectrosc. 61 532 doi: 10.1016/j.sab.2006.03.014
    [35]
    NIST Standard Reference Database #78 (Version 5.9) NIST Atomic Spectra Database, Retrieved from (http://nist.gov/pml/data/asd.cfm)
    [36]
    Zhang L et al 2017 Sci. Sin. Phys., Mech., Astronom. 47 124201 (in Chinese) doi: 10.1360/SSPMA2017-00222
    [37]
    Li J M et al 2017 J. Anal. At. Spectrom. 32 2189 doi: 10.1039/C7JA00199A
    [38]
    Lin X M et al 2021 Optik 243 167301 doi: 10.1016/j.ijleo.2021.167301
    [39]
    Baranov V Y et al 1993 Phys. Rev. E 48 1324 doi: 10.1103/PhysRevE.48.1324
    [40]
    Kull H J 1991 Phys. Rep. 206 197 doi: 10.1016/0370-1573(91)90153-D
    [41]
    Abhilasha, Prasad P S R and Thareja R K 1993 Phys. Rev. E 48 2929 doi: 10.1103/PhysRevE.48.2929
  • Related Articles

    [1]David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
    [2]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [7]ZHANG Weiwei (张卫卫), DENG Baiquan (邓柏权), ZUO Haoyi (左浩毅), ZHENG Xianjun (曾宪俊), CAO Xiaogang (曹小岗), XUE Xiaoyan (薛晓艳), OU Wei (欧巍), CAO Zhi (曹智), GOU Fujun (芶富均). Analysis of Power Model for Linear Plasma Device[J]. Plasma Science and Technology, 2016, 18(8): 844-847. DOI: 10.1088/1009-0630/18/8/09
    [8]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [9]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(1)

    1. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589

    Other cited types(0)

Catalog

    Figures(7)  /  Tables(3)

    Article views (95) PDF downloads (83) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return