Citation: | Yuying LI, Jiacheng XU, Chunle ZHANG, Shuiliang YAO, Jing LI, Zuliang WU, Erhao GAO, Jiali ZHU. Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges[J]. Plasma Science and Technology, 2023, 25(2): 025502. DOI: 10.1088/2058-6272/ac8a40 |
The effect of N2 discharge products on cyclohexane degradation over a MnO2/γ-Al2O3 catalyst has been evaluated by feeding N2 discharge products to the catalyst using a specially designed dielectric barrier discharge reactor. At a reaction temperature of 100 ℃, the cyclohexane conversion increased from 2.46% (without N2 discharge products) to 26.3% (with N2 discharge products). N- and O-containing by-product (3, 4-dehydroproline) was found on the catalyst surface using gas chromatograph-mass spectrometry identification, in which C=N–C and C=N–H bonds were also confirmed from x-ray photoelectron spectroscopy analysis results. Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H2O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO2. The mechanism of N-atom-driven cyclohexane degradation to CO and CO2 is proposed.
This research was supported by National Natural Science Foundation of China (No. 12075037), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_2873) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (No. 2020-0107-3-1).
[1] |
Xu W C et al 2016 Catal. Commun.
84 61 doi: 10.1016/j.catcom.2016.06.004
|
[2] |
Zhu X B et al 2016 Appl. Catal. B: Environ.
183 124 doi: 10.1016/j.apcatb.2015.10.013
|
[3] |
Chang Z S, Wang C and Zhang G J 2020 Plasma Process. Polym.
17 190013
|
[4] |
Yu X et al 2022 Chemosphere
298 134274 doi: 10.1016/j.chemosphere.2022.134274
|
[5] |
Xu W C et al 2020 J. Hazard. Mater.
387 122004 doi: 10.1016/j.jhazmat.2019.122004
|
[6] |
Guo H et al 2019 Chem. Eng. J.
372 226 doi: 10.1016/j.cej.2019.04.119
|
[7] |
Wu Z L et al 2022 Chem. Eng. J.
427 130983 doi: 10.1016/j.cej.2021.130983
|
[8] |
Xia T T et al 2022 J. Hazard. Mater.
424 127700 doi: 10.1016/j.jhazmat.2021.127700
|
[9] |
Song H et al 2019 Plasma Chem. Plasma Process.
39 1469 doi: 10.1007/s11090-019-10013-w
|
[10] |
Kim J et al 2020 J. Hazard. Mater.
397 122577 doi: 10.1016/j.jhazmat.2020.122577
|
[11] |
Yao X H et al 2019 Chemosphere
230 479 doi: 10.1016/j.chemosphere.2019.05.075
|
[12] |
Zhu D D et al 2022 J. Environ. Chem. Eng.
10 107493 doi: 10.1016/j.jece.2022.107493
|
[13] |
Liu X et al 2022 J. Phys. D: Appl. Phys.
55 125206 doi: 10.1088/1361-6463/ac4133
|
[14] |
Zhao X L et al 2022 Chem. Eng. Sci.
250 117389 doi: 10.1016/j.ces.2021.117389
|
[15] |
Cheng H et al 2021 J. Phys. D: Appl. Phys.
54 184003 doi: 10.1088/1361-6463/abdf99
|
[16] |
Whitehead J C 2019 Front. Chem. Sci. Eng.
13 264 doi: 10.1007/s11705-019-1794-3
|
[17] |
Cal M P and Schluep M 2001 Environ. Prog.
20 151 doi: 10.1002/ep.670200310
|
[18] |
Chanson R et al 2013 J. Vac. Sci. Technol. A
31 011301 doi: 10.1116/1.4766681
|
[19] |
Chang T et al 2022 Sci. Total Environ.
828 154290 doi: 10.1016/j.scitotenv.2022.154290
|
[20] |
Marchiori L A et al 2019 Environ. Sci. Pollut. Res.
26 4234 doi: 10.1007/s11356-018-2484-2
|
[21] |
Gharbi D, Trigo M M and Recio M 2019 Aerobiologia
35 441 doi: 10.1007/s10453-019-09568-0
|
[22] |
Campos-Ordoñez T et al 2022 Behav. Brain Res.
418 113664 doi: 10.1016/j.bbr.2021.113664
|
[23] |
Armenta-Reséndiza M et al 2019 Toxicol. Appl. Pharmacol.
376 38 doi: 10.1016/j.taap.2019.05.016
|
[24] |
Zheng Y N et al 2020 J. Catal.
405 659 doi: 10.1016/j.jcat.2020.10.001
|
[25] |
Liang L et al 2020 Nano Energy
69 104421 doi: 10.1016/j.nanoen.2019.104421
|
[26] |
Zhang X M et al 2018 ACS Catal.
8 5261 doi: 10.1021/acscatal.7b04287
|
[27] |
Guo L J et al 2018 Front. Environ. Sci. Eng.
12 15 doi: 10.1007/s11783-018-1017-z
|
[28] |
Ma Y C et al 2021 Plasma Sources Sci. Technol.
30 105002 doi: 10.1088/1361-6595/ac2412
|
[29] |
Umemoto H et al 1999 J. Phys. Chem. A
103 700 doi: 10.1021/jp9839605
|
[30] |
Homayoon Z and Bowman J M 2014 J. Phys. Chem. A
118 545 doi: 10.1021/jp410935k
|
[31] |
Yao S L et al 2009 Open Catal. J.
2 79 doi: 10.2174/1876214X00902010079
|
[32] |
Chang J S et al 1989 The Atom and Molecular Processes of Ionized Gas(Tokyo: Tokyo Denki University Press)
|
[33] |
Liu Y D and Sander S P 2015 J. Phys. Chem. A
119 10060 doi: 10.1021/acs.jpca.5b07220
|
[34] |
Caracciolo A et al 2018 J. Phys. Chem. Lett.
9 1229 doi: 10.1021/acs.jpclett.7b03439
|
[1] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[2] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[3] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[4] | HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04 |
[5] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[6] | HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07 |
[7] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05 |
[10] | CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09 |
1. | Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667 | |
2. | Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049 | |
3. | Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114 | |
4. | Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388 | |
5. | Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980 | |
6. | Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711 |