Advanced Search+
Yuying LI, Jiacheng XU, Chunle ZHANG, Shuiliang YAO, Jing LI, Zuliang WU, Erhao GAO, Jiali ZHU. Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges[J]. Plasma Science and Technology, 2023, 25(2): 025502. DOI: 10.1088/2058-6272/ac8a40
Citation: Yuying LI, Jiacheng XU, Chunle ZHANG, Shuiliang YAO, Jing LI, Zuliang WU, Erhao GAO, Jiali ZHU. Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges[J]. Plasma Science and Technology, 2023, 25(2): 025502. DOI: 10.1088/2058-6272/ac8a40

Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges

More Information
  • Corresponding author:

    Shuiliang YAO, E-mail: yaos@cczu.edu.cn

    Jing LI, E-mail: lijing_831@cczu.edu.cn

  • Received Date: May 29, 2022
  • Revised Date: August 04, 2022
  • Accepted Date: August 15, 2022
  • Available Online: December 05, 2023
  • Published Date: January 05, 2023
  • The effect of N2 discharge products on cyclohexane degradation over a MnO2/γ-Al2O3 catalyst has been evaluated by feeding N2 discharge products to the catalyst using a specially designed dielectric barrier discharge reactor. At a reaction temperature of 100 ℃, the cyclohexane conversion increased from 2.46% (without N2 discharge products) to 26.3% (with N2 discharge products). N- and O-containing by-product (3, 4-dehydroproline) was found on the catalyst surface using gas chromatograph-mass spectrometry identification, in which C=N–C and C=N–H bonds were also confirmed from x-ray photoelectron spectroscopy analysis results. Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H2O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO2. The mechanism of N-atom-driven cyclohexane degradation to CO and CO2 is proposed.

  • This research was supported by National Natural Science Foundation of China (No. 12075037), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_2873) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (No. 2020-0107-3-1).

  • [1]
    Xu W C et al 2016 Catal. Commun. 84 61 doi: 10.1016/j.catcom.2016.06.004
    [2]
    Zhu X B et al 2016 Appl. Catal. B: Environ. 183 124 doi: 10.1016/j.apcatb.2015.10.013
    [3]
    Chang Z S, Wang C and Zhang G J 2020 Plasma Process. Polym. 17 190013
    [4]
    Yu X et al 2022 Chemosphere 298 134274 doi: 10.1016/j.chemosphere.2022.134274
    [5]
    Xu W C et al 2020 J. Hazard. Mater. 387 122004 doi: 10.1016/j.jhazmat.2019.122004
    [6]
    Guo H et al 2019 Chem. Eng. J. 372 226 doi: 10.1016/j.cej.2019.04.119
    [7]
    Wu Z L et al 2022 Chem. Eng. J. 427 130983 doi: 10.1016/j.cej.2021.130983
    [8]
    Xia T T et al 2022 J. Hazard. Mater. 424 127700 doi: 10.1016/j.jhazmat.2021.127700
    [9]
    Song H et al 2019 Plasma Chem. Plasma Process. 39 1469 doi: 10.1007/s11090-019-10013-w
    [10]
    Kim J et al 2020 J. Hazard. Mater. 397 122577 doi: 10.1016/j.jhazmat.2020.122577
    [11]
    Yao X H et al 2019 Chemosphere 230 479 doi: 10.1016/j.chemosphere.2019.05.075
    [12]
    Zhu D D et al 2022 J. Environ. Chem. Eng. 10 107493 doi: 10.1016/j.jece.2022.107493
    [13]
    Liu X et al 2022 J. Phys. D: Appl. Phys. 55 125206 doi: 10.1088/1361-6463/ac4133
    [14]
    Zhao X L et al 2022 Chem. Eng. Sci. 250 117389 doi: 10.1016/j.ces.2021.117389
    [15]
    Cheng H et al 2021 J. Phys. D: Appl. Phys. 54 184003 doi: 10.1088/1361-6463/abdf99
    [16]
    Whitehead J C 2019 Front. Chem. Sci. Eng. 13 264 doi: 10.1007/s11705-019-1794-3
    [17]
    Cal M P and Schluep M 2001 Environ. Prog. 20 151 doi: 10.1002/ep.670200310
    [18]
    Chanson R et al 2013 J. Vac. Sci. Technol. A 31 011301 doi: 10.1116/1.4766681
    [19]
    Chang T et al 2022 Sci. Total Environ. 828 154290 doi: 10.1016/j.scitotenv.2022.154290
    [20]
    Marchiori L A et al 2019 Environ. Sci. Pollut. Res. 26 4234 doi: 10.1007/s11356-018-2484-2
    [21]
    Gharbi D, Trigo M M and Recio M 2019 Aerobiologia 35 441 doi: 10.1007/s10453-019-09568-0
    [22]
    Campos-Ordoñez T et al 2022 Behav. Brain Res. 418 113664 doi: 10.1016/j.bbr.2021.113664
    [23]
    Armenta-Reséndiza M et al 2019 Toxicol. Appl. Pharmacol. 376 38 doi: 10.1016/j.taap.2019.05.016
    [24]
    Zheng Y N et al 2020 J. Catal. 405 659 doi: 10.1016/j.jcat.2020.10.001
    [25]
    Liang L et al 2020 Nano Energy 69 104421 doi: 10.1016/j.nanoen.2019.104421
    [26]
    Zhang X M et al 2018 ACS Catal. 8 5261 doi: 10.1021/acscatal.7b04287
    [27]
    Guo L J et al 2018 Front. Environ. Sci. Eng. 12 15 doi: 10.1007/s11783-018-1017-z
    [28]
    Ma Y C et al 2021 Plasma Sources Sci. Technol. 30 105002 doi: 10.1088/1361-6595/ac2412
    [29]
    Umemoto H et al 1999 J. Phys. Chem. A 103 700 doi: 10.1021/jp9839605
    [30]
    Homayoon Z and Bowman J M 2014 J. Phys. Chem. A 118 545 doi: 10.1021/jp410935k
    [31]
    Yao S L et al 2009 Open Catal. J. 2 79 doi: 10.2174/1876214X00902010079
    [32]
    Chang J S et al 1989 The Atom and Molecular Processes of Ionized Gas(Tokyo: Tokyo Denki University Press)
    [33]
    Liu Y D and Sander S P 2015 J. Phys. Chem. A 119 10060 doi: 10.1021/acs.jpca.5b07220
    [34]
    Caracciolo A et al 2018 J. Phys. Chem. Lett. 9 1229 doi: 10.1021/acs.jpclett.7b03439
  • Related Articles

    [1]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [2]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [3]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [4]HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04
    [5]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [6]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [7]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [10]CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09
  • Cited by

    Periodical cited type(6)

    1. Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667
    2. Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049
    3. Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114
    4. Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388
    5. Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980
    6. Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711

    Other cited types(0)

Catalog

    Figures(11)

    Article views (77) PDF downloads (57) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return