Advanced Search+
Bo LIU, Fangping WANG, Heng ZHANG, Sheng ZHANG, Wenshan DUAN. Fuel compression in the magnetized cylindrical implosion driven by a gold tube heated by heavy ion beams[J]. Plasma Science and Technology, 2023, 25(4): 045201. DOI: 10.1088/2058-6272/ac9aed
Citation: Bo LIU, Fangping WANG, Heng ZHANG, Sheng ZHANG, Wenshan DUAN. Fuel compression in the magnetized cylindrical implosion driven by a gold tube heated by heavy ion beams[J]. Plasma Science and Technology, 2023, 25(4): 045201. DOI: 10.1088/2058-6272/ac9aed

Fuel compression in the magnetized cylindrical implosion driven by a gold tube heated by heavy ion beams

More Information
  • Corresponding author:

    Wenshan DUAN, E-mail: duanws@nwnu.edu.cn

  • Received Date: July 18, 2022
  • Revised Date: September 27, 2022
  • Accepted Date: October 16, 2022
  • Available Online: December 05, 2023
  • Published Date: February 07, 2023
  • A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper. A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field. The density peak of the shock wave increases with the increase in time and it propagates in the -r direction in the cylindrical tube. It seems that this wave is the supermagnetosonic wave. It is found that the Mach number M is between 6.96 and 19.19. The density peak of the shock wave increases as the intensity of the heavy ion beam increases. Furthermore, the density peak of the shock wave increases as the external magnetic field increases.

  • This work was supported by National Natural Science Foundation of China (Nos. 11965019, 42004131 and 42065005).

  • [1]
    Ongena J and Ogawa Y 2016 Energy Policy 96 770 doi: 10.1016/j.enpol.2016.05.037
    [2]
    D'haeseleer W D 2003 Fusion Eng. Des. 66–68 3 doi: 10.1016/S0920-3796(03)00388-0
    [3]
    Ongena J and Van Oost G 2012 Fusion Sci. Technol. 61 3 doi: 10.13182/FST12-A13488
    [4]
    Aymar R, Barabaschi P and Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519 doi: 10.1088/0741-3335/44/5/304
    [5]
    Mirnov S V 2018 Nucl. Fusion 59 015001 doi: 10.1088/1741-4326/aaee92
    [6]
    Ongena J et al 2016 Nat. Phys. 12 398 doi: 10.1038/nphys3745
    [7]
    He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227 doi: 10.1140/epjd/e2007-00005-1
    [8]
    Nuckolls J et al 1972 Nature 239 139 doi: 10.1038/239139a0
    [9]
    Berry H G and Hass M 1982 Annu. Rev. Nucl. Part. Sci. 32 1 doi: 10.1146/annurev.ns.32.120182.000245
    [10]
    Betti R and Hurricane O A 2016 Nat. Phys. 12 435 doi: 10.1038/nphys3736
    [11]
    Kawata S, Karino T and Ogoyski A I 2016 Matter Radiat. Extremes 1 89 doi: 10.1016/j.mre.2016.03.003
    [12]
    Zhang J et al 2020 Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 378 20200015 doi: 10.1098/rsta.2020.0015
    [13]
    Kritcher A L et al 2018 Phys. Plasmas 25 056309 doi: 10.1063/1.5018000
    [14]
    Callahan D A et al 2020 Phys. Plasmas 27 072704 doi: 10.1063/5.0006217
    [15]
    Meezan N B et al 2016 Plasma Phys. Control. Fusion 59 014021 doi: 10.1088/0741-3335/59/1/014021
    [16]
    Perkins L J et al 2017 Phys. Plasmas 24 062708 doi: 10.1063/1.4985150
    [17]
    Smalyuk V A et al 2018 Phys. Plasmas 25 072705 doi: 10.1063/1.5042081
    [18]
    Goncharov V N and Regan S P 2016 Plasma Phys. Control. Fusion 59 014008 doi: 10.1088/0741-3335/59/1/014008
    [19]
    Igumenshchev I V et al 2016 Phys. Plasmas 23 052702 doi: 10.1063/1.4948418
    [20]
    Dodd E S et al 2012 Phys. Plasmas 19 042703 doi: 10.1063/1.3700187
    [21]
    Campbell E M et al 2017 Matter Radiat. Extremes 2 37 doi: 10.1016/j.mre.2017.03.001
    [22]
    Regan S P et al 2018 Fusion Sci. Technol. 73 89 doi: 10.1080/15361055.2017.1397487
    [23]
    Tabak M et al 2005 Phys. Plasmas 12 057305 doi: 10.1063/1.1871246
    [24]
    Fernández J C et al 2009 Nucl. Fusion 49 065004 doi: 10.1088/0029-5515/49/6/065004
    [25]
    Johzaki T et al 2020 High Energy Density Phys. 36 100841 doi: 10.1016/j.hedp.2020.100841
    [26]
    Ongena J et al 2006 Fusion Sci. Technol. 49 3 doi: 10.13182/FST06-A1099
    [27]
    Perkins L J et al 2009 Phys. Rev. Lett. 103 045004 doi: 10.1103/PhysRevLett.103.045004
    [28]
    Atzeni S et al 2013 New J. Phys. 15 045004 doi: 10.1088/1367-2630/15/4/045004
    [29]
    Atzeni S et al 2014 Nucl. Fusion 54 054008 doi: 10.1088/0029-5515/54/5/054008
    [30]
    Betti R et al 2007 Phys. Rev. Lett. 98 155001 doi: 10.1103/PhysRevLett.98.155001
    [31]
    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001 doi: 10.1088/0741-3335/53/9/093001
    [32]
    Shumlak U 2020 J. Appl. Phys. 127 200901 doi: 10.1063/5.0004228
    [33]
    Kawata S 2021 Adv. Phys. X 6 1873860 doi: 10.1080/23746149.2021.1873860
    [34]
    Basko M M, Kemp A J and Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59 doi: 10.1088/0029-5515/40/1/305
    [35]
    Basko M M, Kemp A J and Meyer-ter-Vehn J 2002 Nucl. Fusion 43 16 doi: 10.1088/0029-5515/43/1/302
    [36]
    Kemp A J 2001 Magnetized Cylindrical Implosions Driven by Heavy Ion BeamsGarchingMPQ
    [37]
    Zhang W Y 2016 Matter Radiat. Extremes 1 1 doi: 10.1016/j.mre.2016.04.001
    [38]
    Uchibori K et al 2020 High Energy Density Phys. 34 100748 doi: 10.1016/j.hedp.2020.100748
    [39]
    Basko M M 1992 Nucl. Fusion 32 1515 doi: 10.1088/0029-5515/32/9/I02
    [40]
    Hoffmann D H H et al 2007 Eur. Phys. J. D 44 293 doi: 10.1140/epjd/e2006-00125-0
    [41]
    Hofmann I 2018 Matter Radiat. Extremes 3 1 doi: 10.1016/j.mre.2017.12.001
    [42]
    Fox R F 1999 Am. J. Phys. 67 841 doi: 10.1119/1.19335
    [43]
    Ziegler J F and Biersack J P 1985 The Stopping and Range of Ions in Matter Treatise on Heavy-Ion Science ed D A Bromley (New York: Springer) 93
    [44]
    Bangerter R O, Mark J W K and Thiessen A R 1982 Phys. Lett. A 88 225 doi: 10.1016/0375-9601(82)90233-X
    [45]
    Mehlhorn T A 1981 J. Appl. Phys. 52 6522 doi: 10.1063/1.328602
    [46]
    Santos A G et al 2019 Sci. Rep. 9 1 doi: 10.1038/s41598-018-37186-2
    [47]
    Durante M et al 2019 Phys. Scr. 94 033001 doi: 10.1088/1402-4896/aaf93f
    [48]
    Yang J C et al 2013 Nucl. Instrum. Methods Phys. Res. B 317 263 doi: 10.1016/j.nimb.2013.08.046
    [49]
    Ma X et al 2017 Nucl. Instrum. Methods Phys. Res. B 408 169 doi: 10.1016/j.nimb.2017.03.129
    [50]
    Ren J R et al 2017 Nucl. Instrum. Methods Phys. Res. B 406 703 doi: 10.1016/j.nimb.2017.03.018
    [51]
    Cheng R et al 2018 Matter Radiat. Extremes 3 85 doi: 10.1016/j.mre.2017.11.001
    [52]
    Sauppe J P et al 2020 High Energy Density Phys. 36 100831 doi: 10.1016/j.hedp.2020.100831
    [53]
    Sauppe J P et al 2019 Phys. Plasmas 26 042701 doi: 10.1063/1.5083851
    [54]
    Rezaie-Chamani A, Ghasemizad A and Khoshbinfar S 2019 Phys. Plasmas 26 042703 doi: 10.1063/1.5050964
    [55]
    Piriz A R et al 2002 Phys. Rev. E 66 056403 doi: 10.1103/PhysRevE.66.056403
    [56]
    Piriz A R et al 2005 Nucl. Instrum. Meth. A 544 1 doi: 10.1016/j.nima.2005.01.191
    [57]
    Sauppe J P et al 2020 Phys. Rev. Lett. 124 185003 doi: 10.1103/PhysRevLett.124.185003
    [58]
    Roycroft R, Sauppe J P and Bradley P A 2022 Phys. Plasmas 29 032704 doi: 10.1063/5.0083190
    [59]
    Gittings M et al 2008 Comput. Sci. Discov. 1 015005 doi: 10.1088/1749-4699/1/1/015005
    [60]
    Tahir N A et al 2000 Phys. Rev. E 63 016402 doi: 10.1103/PhysRevE.63.016402
    [61]
    Slutz S A et al 2010 Phys. Plasmas 17 056303 doi: 10.1063/1.3333505
    [62]
    Tahir N A et al 2001 Contrib. Plasma Phys. 41 287 doi: 10.1002/1521-3986(200103)41:2/3<287::AID-CTPP287>3.0.CO;2-H
    [63]
    Lawson J D 1957 Proc. Phys. Soc. B 70 6 doi: 10.1088/0370-1301/70/1/303
    [64]
    Abu-Shawareb H et al 2022 Phys. Rev. Lett. 129 075001 doi: 10.1103/PhysRevLett.129.075001
    [65]
    Kesner J and Conn R W 1976 Nucl. Fusion 16 397 doi: 10.1088/0029-5515/16/3/002
    [66]
    Wang H Y and Jia H X 2013 USim software hypersonic electromagnetic fluid with high energy density physical simulation applications Abstract collection of the 16th National Plasma Science and Technology Conference and the First National Plasma Medical Symposium, Shanghai 57 (in Chinese)
  • Related Articles

    [1]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [2]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [3]Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1
    [4]WU Zhonghang (吴忠航), LIANG Rongqing (梁荣庆), Masaaki NAGATSU (永津雅章), CHANG Xijiang (昌锡江). The Characteristics of Columniform Surface Wave Plasma Excited Around a Quartz Rod by 2.45 GHz Microwaves[J]. Plasma Science and Technology, 2016, 18(10): 987-991. DOI: 10.1088/1009-0630/18/10/04
    [5]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [6]CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
    [7]A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05
    [8]WU Zhonghang(吴忠航), LI Zebin(李泽斌), JU Jiaqi(居家奇), HE Kongduo(何孔多), YANG Xilu(杨曦露), YAN Hang(颜航), CHEN Zhenliu(陈枕流), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Experimental Investigation of Surface Wave Plasma Excited by a Cylindrical Dielectric Rod[J]. Plasma Science and Technology, 2014, 16(2): 118-122. DOI: 10.1088/1009-0630/16/2/06
    [9]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [10]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13

Catalog

    Figures(15)  /  Tables(1)

    Article views (74) PDF downloads (70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return