Advanced Search+
Dengfeng XU, Mei HUANG, Xixuan CHEN, Feng ZHANG, Donghui XIA, Zhijiang WANG, Yuan PAN. Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak[J]. Plasma Science and Technology, 2023, 25(6): 064002. DOI: 10.1088/2058-6272/acb31f
Citation: Dengfeng XU, Mei HUANG, Xixuan CHEN, Feng ZHANG, Donghui XIA, Zhijiang WANG, Yuan PAN. Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak[J]. Plasma Science and Technology, 2023, 25(6): 064002. DOI: 10.1088/2058-6272/acb31f

Investigation of gyrotron-based collective Thomson scattering for fast ion diagnostics in a compact high-field tokamak

More Information
  • Corresponding author:

    Donghui XIA, E-mail: xiadh@hust.edu.cn

  • Received Date: August 10, 2022
  • Revised Date: January 10, 2023
  • Accepted Date: January 12, 2023
  • Available Online: December 05, 2023
  • Published Date: February 28, 2023
  • As a promising method for fast ion diagnostics, collective Thomson scattering (CTS) can measure the one-dimensional velocity distribution of fast ions with high spatial and temporal resolution. The feasibility of diagnosing fast ions in a compact high-field tokamak by CTS was studied in this work, and the results showed that a wide range of probing frequencies could be applied. A high-frequency case and a low-frequency case were mainly considered for fast ion diagnostics in a compact high-field tokamak. The use of a high probing frequency could effectively avoid the refraction effect of the beams, while the application of a low probing frequency allows greater flexibility in the selection of scattering angle which may help to improve the spatial resolution. Based on typical plasma conditions (B0 = 12.2 T, ne0 = 4.3 × 1020 m−3, Te0 = 22.2 keV, Ti0 = 19.8 keV) for a compact high-field tokamak, a 220 GHz CTS diagnostic that utilizes a small scattering angle of θ = 30° and a 160 GHz CTS diagnostic that utilizes an orthogonal geometry were proposed. Further study showed that the high-frequency case could operate in a wider range of plasma conditions and provide more information on fast ions while the low-frequency case could achieve higher spatial resolution of the poloidal direction.

  • This work is supported by the National MCF Energy R & D Program of China (No. 2019YFE03020003), and partly supported by the Key Research and Development Program of Hubei Province (No. 2021BAA167) and National Natural Science Foundation of China (No. 51821005). The authors would like to thank the ECRH group of the auxiliary heating department at SWIP as well as the J-TEXT laboratory for their assistance.

  • [1]
    Rodriguez-Fernandez P et al 2022 Nucl. Fusion 62 042003 doi: 10.1088/1741-4326/ac1654
    [2]
    Greenwald M et al 1984 Phys. Rev. Lett. 53 352 doi: 10.1103/PhysRevLett.53.352
    [3]
    Greenwald M et al 2014 Phys. Plasmas 21 110501 doi: 10.1063/1.4901920
    [4]
    Buratti P et al 2013 Nucl. Fusion 53 104012 doi: 10.1088/0029-5515/53/10/104012
    [5]
    Nielsen S K et al 2015 Plasma Phys. Control. Fusion 57 035009 doi: 10.1088/0741-3335/57/3/035009
    [6]
    Bindslev H et al 1999 Phys. Rev. Lett. 83 3206 doi: 10.1103/PhysRevLett.83.3206
    [7]
    Moseev D et al 2011 Plasma Phys. Control. Fusion 53 105004 doi: 10.1088/0741-3335/53/10/105004
    [8]
    Salewski M et al 2010 Nucl. Fusion 50 035012 doi: 10.1088/0029-5515/50/3/035012
    [9]
    Nishiura M et al 2014 Nucl. Fusion 54 023006 doi: 10.1088/0029-5515/54/2/023006
    [10]
    Rasmussen J et al 2019 Nucl. Fusion 59 096051 doi: 10.1088/1741-4326/ab2f50
    [11]
    Korsholm S B et al 2022 Rev. Sci. Instrum. 93 103539 doi: 10.1063/5.0101867
    [12]
    Nishiura M et al 2020 J. Instrum. 15 C01002 doi: 10.1088/1748-0221/15/01/C01002
    [13]
    Moseev D et al 2020 J. Instrum. 15 C05035 doi: 10.1088/1748-0221/15/05/C05035
    [14]
    Moseev D et al 2018 Rev. Modern Plasma Phys. 2 7 doi: 10.1007/s41614-018-0019-4
    [15]
    Nielsen S K et al 2017 Phys. Scr. 92 024001 doi: 10.1088/1402-4896/92/2/024001
    [16]
    Froula D H et al 2011 Plasma Scattering of Electromagnetic Radiation 2nd edn (Boston: Academic)
    [17]
    Bindslev H 1992 On the theory of Thomson scattering and reflectometry in a relativistic magnetized plasma PhD Thesis University of Oxford, Oxford, USA
    [18]
    Hughes T P and Smith S R P 1989 J. Plasma Phys. 42 215 doi: 10.1017/S0022377800014318
    [19]
    Hughes T P and Smith S R P 1988 Nucl. Fusion 28 1451 doi: 10.1088/0029-5515/28/8/012
    [20]
    Salewski M et al 2011 Nucl. Fusion 51 083014 doi: 10.1088/0029-5515/51/8/083014
    [21]
    Scott S D et al 2020 J. Plasma Phys. 86 865860508 doi: 10.1017/S0022377820001087
    [22]
    Moseev D and Salewski M 2019 Phys. Plasmas 26 020901 doi: 10.1063/1.5085429
    [23]
    Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
    [24]
    Nishiura M et al 2008 Rev. Sci. Instrum. 79 10E731 doi: 10.1063/1.2978201
    [25]
    Prater R 2004 Phys. Plasmas 11 2349 doi: 10.1063/1.1690762
  • Related Articles

    [1]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [2]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [3]Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [7]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [8]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15
  • Cited by

    Periodical cited type(2)

    1. Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499
    2. Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690

    Other cited types(0)

Catalog

    Figures(14)

    Article views (55) PDF downloads (114) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return